At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To simplify the expression \(\frac{(x^{25})^{-6}}{(x^{-3})^{48}}\), we can follow these steps:
1. Apply the power rule, which states that \((x^a)^b = x^{a \cdot b}\), to simplify the exponents in the numerator and denominator.
- For the numerator \((x^{25})^{-6}\):
[tex]\[ (x^{25})^{-6} = x^{25 \cdot (-6)} = x^{-150} \][/tex]
- For the denominator \((x^{-3})^{48}\):
[tex]\[ (x^{-3})^{48} = x^{-3 \cdot 48} = x^{-144} \][/tex]
2. Next, express the original fraction with these simplified exponents:
[tex]\[ \frac{x^{-150}}{x^{-144}} \][/tex]
3. When dividing exponents with the same base, we subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ x^{-150} / x^{-144} = x^{-150 - (-144)} = x^{-150 + 144} = x^{-6} \][/tex]
Therefore, the power of [tex]\(x\)[/tex] in the simplified expression is [tex]\(-6\)[/tex].
1. Apply the power rule, which states that \((x^a)^b = x^{a \cdot b}\), to simplify the exponents in the numerator and denominator.
- For the numerator \((x^{25})^{-6}\):
[tex]\[ (x^{25})^{-6} = x^{25 \cdot (-6)} = x^{-150} \][/tex]
- For the denominator \((x^{-3})^{48}\):
[tex]\[ (x^{-3})^{48} = x^{-3 \cdot 48} = x^{-144} \][/tex]
2. Next, express the original fraction with these simplified exponents:
[tex]\[ \frac{x^{-150}}{x^{-144}} \][/tex]
3. When dividing exponents with the same base, we subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ x^{-150} / x^{-144} = x^{-150 - (-144)} = x^{-150 + 144} = x^{-6} \][/tex]
Therefore, the power of [tex]\(x\)[/tex] in the simplified expression is [tex]\(-6\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.