Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Alright class, let's solve the equation \(\log _4 \sqrt{75 x+1}=2\) step by step.
Step 1: Understand the logarithmic equation.
We have the equation \(\log_4 (\sqrt{75x + 1}) = 2\).
Step 2: Convert the logarithmic equation to an exponential equation.
Recall that if \(\log_b (y) = c\), this implies \(y = b^c\). For our equation, this gives:
[tex]\[ \sqrt{75x + 1} = 4^2 \][/tex]
Step 3: Simplify the exponential equation.
Calculate \(4^2\):
[tex]\[ 4^2 = 16 \][/tex]
Thus:
[tex]\[ \sqrt{75x + 1} = 16 \][/tex]
Step 4: Remove the square root by squaring both sides.
To isolate \(75x + 1\), square both sides of the equation:
[tex]\[ (\sqrt{75x + 1})^2 = 16^2 \][/tex]
This simplifies to:
[tex]\[ 75x + 1 = 256 \][/tex]
Step 5: Solve for \(x\).
Isolate \(x\) by subtracting 1 from both sides:
[tex]\[ 75x = 256 - 1 \][/tex]
[tex]\[ 75x = 255 \][/tex]
Then, divide both sides by 75:
[tex]\[ x = \frac{255}{75} \][/tex]
Step 6: Simplify the fraction.
Reduce the fraction \(\frac{255}{75}\):
[tex]\[ x = \frac{255 \div 15}{75 \div 15} \][/tex]
[tex]\[ x = \frac{17}{5} \][/tex]
Thus, the solution to the equation \(\log _4 \sqrt{75 x+1}=2\) is:
[tex]\[ x = \frac{17}{5} \][/tex]
So, the final answer is:
[tex]\[ x = \frac{17}{5} \][/tex]
Step 1: Understand the logarithmic equation.
We have the equation \(\log_4 (\sqrt{75x + 1}) = 2\).
Step 2: Convert the logarithmic equation to an exponential equation.
Recall that if \(\log_b (y) = c\), this implies \(y = b^c\). For our equation, this gives:
[tex]\[ \sqrt{75x + 1} = 4^2 \][/tex]
Step 3: Simplify the exponential equation.
Calculate \(4^2\):
[tex]\[ 4^2 = 16 \][/tex]
Thus:
[tex]\[ \sqrt{75x + 1} = 16 \][/tex]
Step 4: Remove the square root by squaring both sides.
To isolate \(75x + 1\), square both sides of the equation:
[tex]\[ (\sqrt{75x + 1})^2 = 16^2 \][/tex]
This simplifies to:
[tex]\[ 75x + 1 = 256 \][/tex]
Step 5: Solve for \(x\).
Isolate \(x\) by subtracting 1 from both sides:
[tex]\[ 75x = 256 - 1 \][/tex]
[tex]\[ 75x = 255 \][/tex]
Then, divide both sides by 75:
[tex]\[ x = \frac{255}{75} \][/tex]
Step 6: Simplify the fraction.
Reduce the fraction \(\frac{255}{75}\):
[tex]\[ x = \frac{255 \div 15}{75 \div 15} \][/tex]
[tex]\[ x = \frac{17}{5} \][/tex]
Thus, the solution to the equation \(\log _4 \sqrt{75 x+1}=2\) is:
[tex]\[ x = \frac{17}{5} \][/tex]
So, the final answer is:
[tex]\[ x = \frac{17}{5} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.