Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we will use the formula for kinetic energy \( KE = \frac{1}{2} m v^2 \).
Given:
- Initial velocity (\( v_0 \)) = 2 meters/second
- Initial kinetic energy (\( KE_0 \)) = 40 joules
### Step 1: Determine the mass of the boy
From the initial kinetic energy formula:
[tex]\[ KE_0 = \frac{1}{2} m v_0^2 \][/tex]
Plug in the known values:
[tex]\[ 40 = \frac{1}{2} m \cdot 2^2 \][/tex]
[tex]\[ 40 = \frac{1}{2} m \cdot 4 \][/tex]
[tex]\[ 40 = 2m \][/tex]
Solve for \( m \):
[tex]\[ m = \frac{40}{2} \][/tex]
[tex]\[ m = 20 \, \text{kilograms} \][/tex]
So, the boy weighs 20 kilograms.
### Step 2: Calculate the final velocity
The boy doubles his speed:
[tex]\[ v_f = 2 \times v_0 \][/tex]
[tex]\[ v_f = 2 \times 2 \][/tex]
[tex]\[ v_f = 4 \, \text{meters/second} \][/tex]
### Step 3: Determine the kinetic energy at the faster speed
Using the kinetic energy formula for the final state:
[tex]\[ KE_f = \frac{1}{2} m v_f^2 \][/tex]
Substitute the known values:
[tex]\[ KE_f = \frac{1}{2} \times 20 \times 4^2 \][/tex]
[tex]\[ KE_f = \frac{1}{2} \times 20 \times 16 \][/tex]
[tex]\[ KE_f = 10 \times 16 \][/tex]
[tex]\[ KE_f = 160 \, \text{joules} \][/tex]
So, his kinetic energy at the faster speed is 160 joules.
Therefore, the correct answers are:
- A boy weighing 20 kilograms is riding a skateboard.
- His kinetic energy at the faster speed is 160 joules.
Given:
- Initial velocity (\( v_0 \)) = 2 meters/second
- Initial kinetic energy (\( KE_0 \)) = 40 joules
### Step 1: Determine the mass of the boy
From the initial kinetic energy formula:
[tex]\[ KE_0 = \frac{1}{2} m v_0^2 \][/tex]
Plug in the known values:
[tex]\[ 40 = \frac{1}{2} m \cdot 2^2 \][/tex]
[tex]\[ 40 = \frac{1}{2} m \cdot 4 \][/tex]
[tex]\[ 40 = 2m \][/tex]
Solve for \( m \):
[tex]\[ m = \frac{40}{2} \][/tex]
[tex]\[ m = 20 \, \text{kilograms} \][/tex]
So, the boy weighs 20 kilograms.
### Step 2: Calculate the final velocity
The boy doubles his speed:
[tex]\[ v_f = 2 \times v_0 \][/tex]
[tex]\[ v_f = 2 \times 2 \][/tex]
[tex]\[ v_f = 4 \, \text{meters/second} \][/tex]
### Step 3: Determine the kinetic energy at the faster speed
Using the kinetic energy formula for the final state:
[tex]\[ KE_f = \frac{1}{2} m v_f^2 \][/tex]
Substitute the known values:
[tex]\[ KE_f = \frac{1}{2} \times 20 \times 4^2 \][/tex]
[tex]\[ KE_f = \frac{1}{2} \times 20 \times 16 \][/tex]
[tex]\[ KE_f = 10 \times 16 \][/tex]
[tex]\[ KE_f = 160 \, \text{joules} \][/tex]
So, his kinetic energy at the faster speed is 160 joules.
Therefore, the correct answers are:
- A boy weighing 20 kilograms is riding a skateboard.
- His kinetic energy at the faster speed is 160 joules.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.