Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the solution to the equation \(\frac{2}{3}x + \frac{8}{3} = 2^x\), we will analyze and attempt to solve it step-by-step.
### Step 1: Simplify the Equation
Firstly, let’s write the equation in a more manageable form:
[tex]\[ \frac{2}{3}x + \frac{8}{3} = 2^x \][/tex]
### Step 2: Test the Possible Integer Solutions
Given the multiple-choice answers \(x = -1\), \(x = -2\), \(x = 2\), and \(x = 1\), we will substitute these values into the equation to check if any of them satisfy the equation.
#### Testing \(x = -1\):
[tex]\[ \frac{2}{3}(-1) + \frac{8}{3} = 2^{-1} \][/tex]
[tex]\[ -\frac{2}{3} + \frac{8}{3} = \frac{1}{2} \][/tex]
[tex]\[ \frac{6}{3} = \frac{1}{2} \][/tex]
[tex]\[ 2 \neq \frac{1}{2} \][/tex]
Thus, \(x = -1\) is not a solution.
#### Testing \(x = -2\):
[tex]\[ \frac{2}{3}(-2) + \frac{8}{3} = 2^{-2} \][/tex]
[tex]\[ -\frac{4}{3} + \frac{8}{3} = \frac{1}{4} \][/tex]
[tex]\[ \frac{4}{3} = \frac{1}{4} \][/tex]
[tex]\[ 1.33 \neq 0.25 \][/tex]
Thus, \(x = -2\) is not a solution.
#### Testing \(x = 2\):
[tex]\[ \frac{2}{3}(2) + \frac{8}{3} = 2^2 \][/tex]
[tex]\[ \frac{4}{3} + \frac{8}{3} = 4 \][/tex]
[tex]\[ \frac{12}{3} = 4 \][/tex]
[tex]\[ 4 = 4 \][/tex]
Thus, \(x = 2\) is a solution.
#### Testing \(x = 1\):
[tex]\[ \frac{2}{3}(1) + \frac{8}{3} = 2^1 \][/tex]
[tex]\[ \frac{2}{3} + \frac{8}{3} = 2 \][/tex]
[tex]\[ \frac{10}{3} = 2 \][/tex]
[tex]\[ 3.33 \neq 2 \][/tex]
Thus, \(x = 1\) is not a solution.
### Conclusion
After testing all the provided options, the correct solution to the equation \(\frac{2}{3}x + \frac{8}{3} = 2^x\) is \(x = 2\). This matches the possible answer provided in the question options.
Thus, the solution to the equation is:
[tex]\[ x = 2 \][/tex]
### Step 1: Simplify the Equation
Firstly, let’s write the equation in a more manageable form:
[tex]\[ \frac{2}{3}x + \frac{8}{3} = 2^x \][/tex]
### Step 2: Test the Possible Integer Solutions
Given the multiple-choice answers \(x = -1\), \(x = -2\), \(x = 2\), and \(x = 1\), we will substitute these values into the equation to check if any of them satisfy the equation.
#### Testing \(x = -1\):
[tex]\[ \frac{2}{3}(-1) + \frac{8}{3} = 2^{-1} \][/tex]
[tex]\[ -\frac{2}{3} + \frac{8}{3} = \frac{1}{2} \][/tex]
[tex]\[ \frac{6}{3} = \frac{1}{2} \][/tex]
[tex]\[ 2 \neq \frac{1}{2} \][/tex]
Thus, \(x = -1\) is not a solution.
#### Testing \(x = -2\):
[tex]\[ \frac{2}{3}(-2) + \frac{8}{3} = 2^{-2} \][/tex]
[tex]\[ -\frac{4}{3} + \frac{8}{3} = \frac{1}{4} \][/tex]
[tex]\[ \frac{4}{3} = \frac{1}{4} \][/tex]
[tex]\[ 1.33 \neq 0.25 \][/tex]
Thus, \(x = -2\) is not a solution.
#### Testing \(x = 2\):
[tex]\[ \frac{2}{3}(2) + \frac{8}{3} = 2^2 \][/tex]
[tex]\[ \frac{4}{3} + \frac{8}{3} = 4 \][/tex]
[tex]\[ \frac{12}{3} = 4 \][/tex]
[tex]\[ 4 = 4 \][/tex]
Thus, \(x = 2\) is a solution.
#### Testing \(x = 1\):
[tex]\[ \frac{2}{3}(1) + \frac{8}{3} = 2^1 \][/tex]
[tex]\[ \frac{2}{3} + \frac{8}{3} = 2 \][/tex]
[tex]\[ \frac{10}{3} = 2 \][/tex]
[tex]\[ 3.33 \neq 2 \][/tex]
Thus, \(x = 1\) is not a solution.
### Conclusion
After testing all the provided options, the correct solution to the equation \(\frac{2}{3}x + \frac{8}{3} = 2^x\) is \(x = 2\). This matches the possible answer provided in the question options.
Thus, the solution to the equation is:
[tex]\[ x = 2 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.