Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which of the given choices are equivalent to the expression \( x^{3/5} \), we need to simplify and compare each choice to \( x^{3/5} \).
### Given Expression:
[tex]\[ x^{3/5} \][/tex]
### Choices:
#### A. \( \left(x^8\right)^{1/5} \)
Simplify using the power of a power rule, \((a^m)^n = a^{m \cdot n}\):
[tex]\[ \left(x^8\right)^{1/5} = x^{8 \cdot (1/5)} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### B. \( \sqrt[8]{x^5} \)
Express in fractional exponents:
[tex]\[ \sqrt[8]{x^5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### C. \( \sqrt[5]{x^8} \)
Express in fractional exponents:
[tex]\[ \sqrt[5]{x^8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### D. \( \left(x^5\right)^{1/8} \)
Simplify using the power of a power rule:
[tex]\[ \left(x^5\right)^{1/8} = x^{5 \cdot (1/8)} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### E. \( \left(\sqrt[8]{x}\right)^5 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[8]{x}\right)^5 = \left(x^{1/8}\right)^5 = x^{(1/8) \cdot 5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### F. \( \left(\sqrt[5]{x}\right)^8 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[5]{x}\right)^8 = \left(x^{1/5}\right)^8 = x^{(1/5) \cdot 8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
### Conclusion:
None of the given choices \(A, B, C, D, E,\) and \(F\) are equivalent to \( x^{3/5} \).
So, there are no equivalent expressions from the choices provided.
### Given Expression:
[tex]\[ x^{3/5} \][/tex]
### Choices:
#### A. \( \left(x^8\right)^{1/5} \)
Simplify using the power of a power rule, \((a^m)^n = a^{m \cdot n}\):
[tex]\[ \left(x^8\right)^{1/5} = x^{8 \cdot (1/5)} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### B. \( \sqrt[8]{x^5} \)
Express in fractional exponents:
[tex]\[ \sqrt[8]{x^5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### C. \( \sqrt[5]{x^8} \)
Express in fractional exponents:
[tex]\[ \sqrt[5]{x^8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### D. \( \left(x^5\right)^{1/8} \)
Simplify using the power of a power rule:
[tex]\[ \left(x^5\right)^{1/8} = x^{5 \cdot (1/8)} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### E. \( \left(\sqrt[8]{x}\right)^5 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[8]{x}\right)^5 = \left(x^{1/8}\right)^5 = x^{(1/8) \cdot 5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### F. \( \left(\sqrt[5]{x}\right)^8 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[5]{x}\right)^8 = \left(x^{1/5}\right)^8 = x^{(1/5) \cdot 8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
### Conclusion:
None of the given choices \(A, B, C, D, E,\) and \(F\) are equivalent to \( x^{3/5} \).
So, there are no equivalent expressions from the choices provided.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.