Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the unknown values in the inverse of the function \( y = x^2 - 18x \):
1. First, we look at the original function: \( y = x^2 - 18x \).
2. To find the inverse, we start by swapping \( x \) and \( y \):
[tex]\[ x = y^2 - 18y \][/tex]
3. We then arrange this as a quadratic equation in terms of \( y \):
[tex]\[ y^2 - 18y - x = 0 \][/tex]
4. To solve for \( y \), we use the quadratic formula, \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = -18 \), and \( c = -x \). However, in this specific quadratic equation:
[tex]\[ y = \frac{18 \pm \sqrt{(18)^2 + 4x}}{2} \][/tex]
5. Simplifying the expression inside the square root and the equation itself:
[tex]\[ (18)^2 = 324 \implies y = \frac{18 \pm \sqrt{324 + 4x}}{2} \][/tex]
[tex]\[ y = \frac{18 \pm \sqrt{324 + 4x}}{2} = 9 \pm \sqrt{81 + x} \][/tex]
6. Thus, the inverse function is \( y = 9 \pm \sqrt{81 + x} \).
From this inverse function, we can see that the form is \( y = \pm \sqrt{bx + c} + d \). By comparison:
- \( b = 1 \)
- \( c = 81 \)
- \( d = 9 \)
So, the values are:
[tex]\[ \begin{array}{l} b = 1 \\ c = 81 \\ d = 9 \end{array} \][/tex]
1. First, we look at the original function: \( y = x^2 - 18x \).
2. To find the inverse, we start by swapping \( x \) and \( y \):
[tex]\[ x = y^2 - 18y \][/tex]
3. We then arrange this as a quadratic equation in terms of \( y \):
[tex]\[ y^2 - 18y - x = 0 \][/tex]
4. To solve for \( y \), we use the quadratic formula, \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = -18 \), and \( c = -x \). However, in this specific quadratic equation:
[tex]\[ y = \frac{18 \pm \sqrt{(18)^2 + 4x}}{2} \][/tex]
5. Simplifying the expression inside the square root and the equation itself:
[tex]\[ (18)^2 = 324 \implies y = \frac{18 \pm \sqrt{324 + 4x}}{2} \][/tex]
[tex]\[ y = \frac{18 \pm \sqrt{324 + 4x}}{2} = 9 \pm \sqrt{81 + x} \][/tex]
6. Thus, the inverse function is \( y = 9 \pm \sqrt{81 + x} \).
From this inverse function, we can see that the form is \( y = \pm \sqrt{bx + c} + d \). By comparison:
- \( b = 1 \)
- \( c = 81 \)
- \( d = 9 \)
So, the values are:
[tex]\[ \begin{array}{l} b = 1 \\ c = 81 \\ d = 9 \end{array} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.