Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's work through the problems step-by-step.
Part (i)
Evaluate the expression \(1 \frac{1}{2} \div\left(3 \frac{1}{3}+4 \frac{1}{5}-6 \frac{1}{2}\right)\).
1. First, convert the mixed numbers to improper fractions:
- \(1 \frac{1}{2} = 1 + \frac{1}{2} = \frac{2}{2} + \frac{1}{2} = \frac{3}{2}\)
- \(3 \frac{1}{3} = 3 + \frac{1}{3} = \frac{9}{3} + \frac{1}{3} = \frac{10}{3}\)
- \(4 \frac{1}{5} = 4 + \frac{1}{5} = \frac{20}{5} + \frac{1}{5} = \frac{21}{5}\)
- \(6 \frac{1}{2} = 6 + \frac{1}{2} = \frac{12}{2} + \frac{1}{2} = \frac{13}{2}\)
2. Calculate the expression inside the parentheses:
[tex]\[ 3 \frac{1}{3} + 4 \frac{1}{5} - 6 \frac{1}{2} = \frac{10}{3} + \frac{21}{5} - \frac{13}{2} \][/tex]
3. To add and subtract these fractions, find a common denominator (LCM of 3, 5, and 2 is 30):
- Convert each fraction to have the denominator 30:
- \(\frac{10}{3} = \frac{10 \times 10}{3 \times 10} = \frac{100}{30}\)
- \(\frac{21}{5} = \frac{21 \times 6}{5 \times 6} = \frac{126}{30}\)
- \(\frac{13}{2} = \frac{13 \times 15}{2 \times 15} = \frac{195}{30}\)
4. Add and subtract the numerators:
[tex]\[ \frac{100}{30} + \frac{126}{30} - \frac{195}{30} = \frac{100 + 126 - 195}{30} = \frac{31}{30} \][/tex]
5. Now, divide \(\frac{3}{2}\) by \(\frac{31}{30}\):
[tex]\[ 1 \frac{1}{2} \div\left(3 \frac{1}{3}+4 \frac{1}{5}-6 \frac{1}{2}\right) = \frac{3}{2} \div \frac{31}{30} = \frac{3}{2} \times \frac{30}{31} = \frac{90}{62} = \frac{45}{31} \approx 1.4516129032258067 \][/tex]
So, the value for part (i) is approximately \(1.4516129032258067\).
Part (ii)
Evaluate the expression \(1 \frac{7}{53}\) of \(\left[1 \frac{1}{5}-\left\{3 \frac{4}{5} \div(\ldots\right.\right. \).
Unfortunately, the given problem for part (ii) is incomplete, so it is impossible to determine a valid solution without additional information. The expression after \(3 \frac{4}{5} \div(\ldots)\) is missing, and therefore part (ii) cannot be solved as presented.
In conclusion:
- The value for part (i) is approximately \(1.4516129032258067\).
- The value for part (ii) cannot be determined as the expression is incomplete or incorrect.
Part (i)
Evaluate the expression \(1 \frac{1}{2} \div\left(3 \frac{1}{3}+4 \frac{1}{5}-6 \frac{1}{2}\right)\).
1. First, convert the mixed numbers to improper fractions:
- \(1 \frac{1}{2} = 1 + \frac{1}{2} = \frac{2}{2} + \frac{1}{2} = \frac{3}{2}\)
- \(3 \frac{1}{3} = 3 + \frac{1}{3} = \frac{9}{3} + \frac{1}{3} = \frac{10}{3}\)
- \(4 \frac{1}{5} = 4 + \frac{1}{5} = \frac{20}{5} + \frac{1}{5} = \frac{21}{5}\)
- \(6 \frac{1}{2} = 6 + \frac{1}{2} = \frac{12}{2} + \frac{1}{2} = \frac{13}{2}\)
2. Calculate the expression inside the parentheses:
[tex]\[ 3 \frac{1}{3} + 4 \frac{1}{5} - 6 \frac{1}{2} = \frac{10}{3} + \frac{21}{5} - \frac{13}{2} \][/tex]
3. To add and subtract these fractions, find a common denominator (LCM of 3, 5, and 2 is 30):
- Convert each fraction to have the denominator 30:
- \(\frac{10}{3} = \frac{10 \times 10}{3 \times 10} = \frac{100}{30}\)
- \(\frac{21}{5} = \frac{21 \times 6}{5 \times 6} = \frac{126}{30}\)
- \(\frac{13}{2} = \frac{13 \times 15}{2 \times 15} = \frac{195}{30}\)
4. Add and subtract the numerators:
[tex]\[ \frac{100}{30} + \frac{126}{30} - \frac{195}{30} = \frac{100 + 126 - 195}{30} = \frac{31}{30} \][/tex]
5. Now, divide \(\frac{3}{2}\) by \(\frac{31}{30}\):
[tex]\[ 1 \frac{1}{2} \div\left(3 \frac{1}{3}+4 \frac{1}{5}-6 \frac{1}{2}\right) = \frac{3}{2} \div \frac{31}{30} = \frac{3}{2} \times \frac{30}{31} = \frac{90}{62} = \frac{45}{31} \approx 1.4516129032258067 \][/tex]
So, the value for part (i) is approximately \(1.4516129032258067\).
Part (ii)
Evaluate the expression \(1 \frac{7}{53}\) of \(\left[1 \frac{1}{5}-\left\{3 \frac{4}{5} \div(\ldots\right.\right. \).
Unfortunately, the given problem for part (ii) is incomplete, so it is impossible to determine a valid solution without additional information. The expression after \(3 \frac{4}{5} \div(\ldots)\) is missing, and therefore part (ii) cannot be solved as presented.
In conclusion:
- The value for part (i) is approximately \(1.4516129032258067\).
- The value for part (ii) cannot be determined as the expression is incomplete or incorrect.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.