Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the pre-images of the given vertices \( A \) under the rule of reflection across the y-axis, which is given by the transformation \((x, y) \rightarrow (-x, y)\), we'll work through each vertex step by step.
1. For the vertex \( A(-4, 2) \):
- Given the transformation rule \((x, y) \rightarrow (-x, y)\), we need to find the original point that underwent this transformation to become \( (-4, 2) \).
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = -4\) and \( y = 2\).
- Solving for \( x \), we find \( x = 4 \).
- Therefore, the pre-image of \( A(-4, 2) \) is \( (4, 2) \).
2. For the vertex \( A(-2, -4) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = -2\) and \( y = -4\).
- Solving for \( x \), we find \( x = 2 \).
- Therefore, the pre-image of \( A(-2, -4) \) is \( (2, -4) \).
3. For the vertex \( A(2, 4) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = 2\) and \( y = 4\).
- Solving for \( x \), we find \( x = -2 \).
- Therefore, the pre-image of \( A(2, 4) \) is \( (-2, 4) \).
4. For the vertex \( A(4, -2) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = 4\) and \( y = -2\).
- Solving for \( x \), we find \( x = -4 \).
- Therefore, the pre-image of \( A(4, -2) \) is \( (-4, -2) \).
In summary, the pre-images are:
- The pre-image of \( A(-4, 2) \) is \( (4, 2) \).
- The pre-image of \( A(-2, -4) \) is \( (2, -4) \).
- The pre-image of \( A(2, 4) \) is \( (-2, 4) \).
- The pre-image of \( A(4, -2) \) is \( (-4, -2) \).
Hence, the pre-images of the given vertices are [tex]\( (4, 2) \)[/tex], [tex]\( (2, -4) \)[/tex], [tex]\( (-2, 4) \)[/tex], and [tex]\( (-4, -2) \)[/tex].
1. For the vertex \( A(-4, 2) \):
- Given the transformation rule \((x, y) \rightarrow (-x, y)\), we need to find the original point that underwent this transformation to become \( (-4, 2) \).
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = -4\) and \( y = 2\).
- Solving for \( x \), we find \( x = 4 \).
- Therefore, the pre-image of \( A(-4, 2) \) is \( (4, 2) \).
2. For the vertex \( A(-2, -4) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = -2\) and \( y = -4\).
- Solving for \( x \), we find \( x = 2 \).
- Therefore, the pre-image of \( A(-2, -4) \) is \( (2, -4) \).
3. For the vertex \( A(2, 4) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = 2\) and \( y = 4\).
- Solving for \( x \), we find \( x = -2 \).
- Therefore, the pre-image of \( A(2, 4) \) is \( (-2, 4) \).
4. For the vertex \( A(4, -2) \):
- Let the original point be \( (x, y) \).
- Applying the rule: \(-x = 4\) and \( y = -2\).
- Solving for \( x \), we find \( x = -4 \).
- Therefore, the pre-image of \( A(4, -2) \) is \( (-4, -2) \).
In summary, the pre-images are:
- The pre-image of \( A(-4, 2) \) is \( (4, 2) \).
- The pre-image of \( A(-2, -4) \) is \( (2, -4) \).
- The pre-image of \( A(2, 4) \) is \( (-2, 4) \).
- The pre-image of \( A(4, -2) \) is \( (-4, -2) \).
Hence, the pre-images of the given vertices are [tex]\( (4, 2) \)[/tex], [tex]\( (2, -4) \)[/tex], [tex]\( (-2, 4) \)[/tex], and [tex]\( (-4, -2) \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.