Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the estimated value of \( x \) for \( y = 0.049 \), we need to determine the relationship between \( x \) and \( y \) using the provided data. Given the experiment results in the table:
[tex]\[ \begin{array}{|r|c|} \hline x & y \\ \hline 2.5 & 0.400 \\ 9.4 & 0.106 \\ 15.6 & 0.064 \\ 19.5 & 0.051 \\ 25.8 & 0.038 \\ \hline \end{array} \][/tex]
We can see that as \( x \) increases, \( y \) decreases. To estimate \( x \) for \( y = 0.049 \), interpolation between the data points closest to \( y = 0.049 \) will be done.
Looking at the values, we find that \( y = 0.049 \) lies between \( y = 0.051 \) and \( y = 0.038 \):
- For \( x = 19.5 \), \( y = 0.051 \)
- For \( x = 25.8 \), \( y = 0.038 \)
Interpolate these points to find the estimated value of \( x \):
Considering:
\( y_{1} = 0.051 \) \\
\( x_{1} = 19.5 \) \\
\( y_{2} = 0.038 \) \\
\( x_{2} = 25.8 \)
Using linear interpolation:
[tex]\[ x = x_{1} + \frac{(y - y_{1})}{(y_{2} - y_{1})} (x_{2} - x_{1}) \][/tex]
[tex]\[ x = 19.5 + \frac{(0.049 - 0.051)}{(0.038 - 0.051)} (25.8 - 19.5) \][/tex]
Evaluating this step-by-step:
1. Calculate the numerator and denominator for the interpolation fraction.
[tex]\[ y - y_{1} = 0.049 - 0.051 = -0.002 \][/tex]
[tex]\[ y_{2} - y_{1} = 0.038 - 0.051 = -0.013 \][/tex]
2. Compute the fraction:
[tex]\[ \frac{-0.002}{-0.013} = \frac{2}{13} \approx 0.15384615384615385 \][/tex]
3. Apply this fraction to the difference in \( x \) values:
[tex]\[ x_{2} - x_{1} = 25.8 - 19.5 = 6.3 \][/tex]
[tex]\[ 0.15384615384615385 \times 6.3 \approx 0.9692307692307693 \][/tex]
4. Add this value to \( x_{1} \):
[tex]\[ x = 19.5 + 0.9692307692307693 \approx 20.46923076923076 \][/tex]
The estimated value of \( x \) for \( y = 0.049 \) is:
[tex]\[ x \approx 20.469 \][/tex]
Hence, the correct answer to the question is:
A. 20.4
[tex]\[ \begin{array}{|r|c|} \hline x & y \\ \hline 2.5 & 0.400 \\ 9.4 & 0.106 \\ 15.6 & 0.064 \\ 19.5 & 0.051 \\ 25.8 & 0.038 \\ \hline \end{array} \][/tex]
We can see that as \( x \) increases, \( y \) decreases. To estimate \( x \) for \( y = 0.049 \), interpolation between the data points closest to \( y = 0.049 \) will be done.
Looking at the values, we find that \( y = 0.049 \) lies between \( y = 0.051 \) and \( y = 0.038 \):
- For \( x = 19.5 \), \( y = 0.051 \)
- For \( x = 25.8 \), \( y = 0.038 \)
Interpolate these points to find the estimated value of \( x \):
Considering:
\( y_{1} = 0.051 \) \\
\( x_{1} = 19.5 \) \\
\( y_{2} = 0.038 \) \\
\( x_{2} = 25.8 \)
Using linear interpolation:
[tex]\[ x = x_{1} + \frac{(y - y_{1})}{(y_{2} - y_{1})} (x_{2} - x_{1}) \][/tex]
[tex]\[ x = 19.5 + \frac{(0.049 - 0.051)}{(0.038 - 0.051)} (25.8 - 19.5) \][/tex]
Evaluating this step-by-step:
1. Calculate the numerator and denominator for the interpolation fraction.
[tex]\[ y - y_{1} = 0.049 - 0.051 = -0.002 \][/tex]
[tex]\[ y_{2} - y_{1} = 0.038 - 0.051 = -0.013 \][/tex]
2. Compute the fraction:
[tex]\[ \frac{-0.002}{-0.013} = \frac{2}{13} \approx 0.15384615384615385 \][/tex]
3. Apply this fraction to the difference in \( x \) values:
[tex]\[ x_{2} - x_{1} = 25.8 - 19.5 = 6.3 \][/tex]
[tex]\[ 0.15384615384615385 \times 6.3 \approx 0.9692307692307693 \][/tex]
4. Add this value to \( x_{1} \):
[tex]\[ x = 19.5 + 0.9692307692307693 \approx 20.46923076923076 \][/tex]
The estimated value of \( x \) for \( y = 0.049 \) is:
[tex]\[ x \approx 20.469 \][/tex]
Hence, the correct answer to the question is:
A. 20.4
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.