Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the number of sides in a regular polygon given the measure of an exterior angle, we use the fact that the sum of all exterior angles of any polygon is always \(360^\circ\).
Here’s a step-by-step process for solving the problem:
1. Understand the problem: We are given that the exterior angle of a regular polygon is \(30^\circ\) and we need to find the number of sides (\(n\)) of this polygon.
2. Sum of exterior angles: The sum of all exterior angles of a polygon is always \(360^\circ\).
3. Formula for exterior angle: The measure of each exterior angle of a regular polygon is given by:
[tex]\[ \text{Exterior angle} = \frac{360^\circ}{n} \][/tex]
where \(n\) is the number of sides.
4. Set up the equation: Given the exterior angle is \(30^\circ\), we substitute this into the formula:
[tex]\[ 30^\circ = \frac{360^\circ}{n} \][/tex]
5. Solve for \(n\):
[tex]\[ n = \frac{360^\circ}{30^\circ} \][/tex]
6. Calculate the number of sides:
[tex]\[ n = 12 \][/tex]
Thus, the regular polygon has 12 sides. Therefore, the correct answer is:
B. 12
Here’s a step-by-step process for solving the problem:
1. Understand the problem: We are given that the exterior angle of a regular polygon is \(30^\circ\) and we need to find the number of sides (\(n\)) of this polygon.
2. Sum of exterior angles: The sum of all exterior angles of a polygon is always \(360^\circ\).
3. Formula for exterior angle: The measure of each exterior angle of a regular polygon is given by:
[tex]\[ \text{Exterior angle} = \frac{360^\circ}{n} \][/tex]
where \(n\) is the number of sides.
4. Set up the equation: Given the exterior angle is \(30^\circ\), we substitute this into the formula:
[tex]\[ 30^\circ = \frac{360^\circ}{n} \][/tex]
5. Solve for \(n\):
[tex]\[ n = \frac{360^\circ}{30^\circ} \][/tex]
6. Calculate the number of sides:
[tex]\[ n = 12 \][/tex]
Thus, the regular polygon has 12 sides. Therefore, the correct answer is:
B. 12
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.