Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the simplest form of \(\sqrt[3]{x^{10}}\), we can follow a systematic process.
1. Rewrite the expression \( x^{10} \) in a simpler form:
\( x^{10} = (x^9) \cdot x \)
2. Breakdown the expression:
We need to separate \( x^{10} \) into components that can be easily managed under the cube root.
3. Use the property of exponents:
Recall that \(\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}\). Applying this to our expression, we get:
[tex]\[ \sqrt[3]{x^{10}} = \sqrt[3]{(x^9) \cdot x} \][/tex]
4. Simplify \(\sqrt[3]{x^9}\):
Note that \( x^9 \) can be simplified under a cube root because \( (x^3)^3 = x^9 \). Therefore:
[tex]\[ \sqrt[3]{x^9} = x^3 \][/tex]
5. Combine the simplified parts:
Now we can rewrite our expression as:
[tex]\[ \sqrt[3]{x^{10}} = \sqrt[3]{(x^9) \cdot x} = \sqrt[3]{x^9} \cdot \sqrt[3]{x} = x^3 \cdot \sqrt[3]{x} \][/tex]
Thus, the simplest form of \(\sqrt[3]{x^{10}}\) is:
[tex]\[ \boxed{x^3 \sqrt[3]{x}} \][/tex]
1. Rewrite the expression \( x^{10} \) in a simpler form:
\( x^{10} = (x^9) \cdot x \)
2. Breakdown the expression:
We need to separate \( x^{10} \) into components that can be easily managed under the cube root.
3. Use the property of exponents:
Recall that \(\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}\). Applying this to our expression, we get:
[tex]\[ \sqrt[3]{x^{10}} = \sqrt[3]{(x^9) \cdot x} \][/tex]
4. Simplify \(\sqrt[3]{x^9}\):
Note that \( x^9 \) can be simplified under a cube root because \( (x^3)^3 = x^9 \). Therefore:
[tex]\[ \sqrt[3]{x^9} = x^3 \][/tex]
5. Combine the simplified parts:
Now we can rewrite our expression as:
[tex]\[ \sqrt[3]{x^{10}} = \sqrt[3]{(x^9) \cdot x} = \sqrt[3]{x^9} \cdot \sqrt[3]{x} = x^3 \cdot \sqrt[3]{x} \][/tex]
Thus, the simplest form of \(\sqrt[3]{x^{10}}\) is:
[tex]\[ \boxed{x^3 \sqrt[3]{x}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.