At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
To rewrite (100^{7/2}) in radical form, you can use the property of exponents that states: (a^{m/n} = \sqrt[n]{a^m}).
So, (100^{7/2}) can be rewritten as: 1007
This is the radical form of (100^{7/2}).
Step-by-step explanation:
Let’s break down the process of rewriting (100^{7/2}) in radical form step by step:
1. Understand the Exponent Rule:
The expression: (a^{m/n})
can be rewritten as: (\sqrt[n]{a^m}).
This means that the exponent (m/n) indicates a radical
(root) form.
2. Identify the Base and Exponents:
In (100^{7/2}): the base is 100,
the numerator of the exponent is 7; and
the denominator is 2.
3. Apply the Exponent Rule:
Using the rule (a^{m/n} = \sqrt[n]{a^m}), rewrite
(100^{7/2}) as:
[ 100^{7/2} = \sqrt[2]{100^7} ]
4. Simplify the Radical:
The square root (denoted by (\sqrt{})) is the same
as the 2nd root, so we can simplify the expression to:
[ \sqrt{100^7} ] , So
100^{7/2}) in radical form is (\sqrt{100^7}).
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.