Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the probability \( P(A^C) \), where \( A \) is the event that a place is a city, we first need to identify all the places that are not cities and then calculate their probability.
Let's start by examining the provided table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Place & Is a city & Is in North America \\ \hline Rome & [tex]$\times$[/tex] & \\
\hline
Tokyo & [tex]$\checkmark$[/tex] & \\
\hline
Houston & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Peru & [tex]$\times$[/tex] & \\
\hline
Miami & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Toronto & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Canada & [tex]$\times$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
\end{tabular}
\][/tex]
We are given that \( A \) represents the event that a place is a city. Therefore, \( A^C \) represents the event that a place is not a city.
From the table:
- The total number of places is \( 7 \).
- The places that are not cities are:
- Rome
- Peru
- Canada
There are \( 3 \) places that are not cities (Rome, Peru, and Canada).
The probability \( P(A^C) \) is calculated as:
[tex]\[ P(A^C) = \frac{\text{Number of places that are not cities}}{\text{Total number of places}} = \frac{3}{7} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\frac{3}{7}} \][/tex]
Therefore, the correct answer is:
B. [tex]\( \frac{3}{7} \)[/tex]
Let's start by examining the provided table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Place & Is a city & Is in North America \\ \hline Rome & [tex]$\times$[/tex] & \\
\hline
Tokyo & [tex]$\checkmark$[/tex] & \\
\hline
Houston & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Peru & [tex]$\times$[/tex] & \\
\hline
Miami & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Toronto & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Canada & [tex]$\times$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
\end{tabular}
\][/tex]
We are given that \( A \) represents the event that a place is a city. Therefore, \( A^C \) represents the event that a place is not a city.
From the table:
- The total number of places is \( 7 \).
- The places that are not cities are:
- Rome
- Peru
- Canada
There are \( 3 \) places that are not cities (Rome, Peru, and Canada).
The probability \( P(A^C) \) is calculated as:
[tex]\[ P(A^C) = \frac{\text{Number of places that are not cities}}{\text{Total number of places}} = \frac{3}{7} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\frac{3}{7}} \][/tex]
Therefore, the correct answer is:
B. [tex]\( \frac{3}{7} \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.