At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Explanation:
First, calculate the mass of water:
m_water = 50.0 g
Next, calculate the temperature change (ΔT):
ΔT = T_final - T_initial = 18.4 °C - 23.0 °C = -4.6 °C
Since the temperature decreases, the process is endothermic (heat is absorbed). The heat absorbed (q) is:
q = mcΔT
where m is the mass of water, c is the specific heat capacity of water (approximately 4.184 J/g°C), and ΔT is the temperature change:
q = 50.0 g × 4.184 J/g°C × (-4.6 °C) = -966.4 J
Since the process is endothermic, the enthalpy change (ΔH) is positive:
ΔH = q = 966.4 J
Next, calculate the number of moles of ammonium nitrate (n):
n = m / M
where m is the mass of ammonium nitrate (2.88 g) and M is the molar mass (80.06 g/mol):
n = 2.88 g / 80.06 g/mol = 0.036 mol
Finally, calculate the molar enthalpy of solvation (ΔsolvHm):
ΔsolvHm = ΔH / n = 966.4 J / 0.036 mol = 26,822 J/mol = 26.82 kJ/mol
Therefore, the molar enthalpy of solvation (ΔsolvHm) is 26.82 kJ/mol.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.