Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the expression \(-\frac{1}{28} - \left(-\frac{1}{42}\right)\), follow these steps:
1. First, simplify the expression inside the parentheses:
[tex]\[ -\left(-\frac{1}{42}\right) = \frac{1}{42} \][/tex]
2. Rewrite the original expression with this simplification:
[tex]\[ -\frac{1}{28} + \frac{1}{42} \][/tex]
3. Next, find a common denominator for the fractions. The denominators are 28 and 42. The least common multiple (LCM) of 28 and 42 is 84.
4. Convert each fraction to have the common denominator of 84:
[tex]\[ -\frac{1}{28} = -\frac{1 \times 3}{28 \times 3} = -\frac{3}{84} \][/tex]
[tex]\[ \frac{1}{42} = \frac{1 \times 2}{42 \times 2} = \frac{2}{84} \][/tex]
5. Now, with a common denominator, add the two fractions:
[tex]\[ -\frac{3}{84} + \frac{2}{84} = \frac{-3 + 2}{84} = \frac{-1}{84} \][/tex]
6. Thus, the result of the expression is:
[tex]\[ -\frac{1}{84} \][/tex]
To summarize the steps clearly:
- Simplify \(-\left(-\frac{1}{42}\right)\) to \(\frac{1}{42}\).
- Find a common denominator for the fractions, converting them to \(-\frac{3}{84}\) and \(\frac{2}{84}\).
- Add these fractions to get \(\frac{-1}{84}\).
The final result is [tex]\(\boxed{-\frac{1}{84}}\)[/tex].
1. First, simplify the expression inside the parentheses:
[tex]\[ -\left(-\frac{1}{42}\right) = \frac{1}{42} \][/tex]
2. Rewrite the original expression with this simplification:
[tex]\[ -\frac{1}{28} + \frac{1}{42} \][/tex]
3. Next, find a common denominator for the fractions. The denominators are 28 and 42. The least common multiple (LCM) of 28 and 42 is 84.
4. Convert each fraction to have the common denominator of 84:
[tex]\[ -\frac{1}{28} = -\frac{1 \times 3}{28 \times 3} = -\frac{3}{84} \][/tex]
[tex]\[ \frac{1}{42} = \frac{1 \times 2}{42 \times 2} = \frac{2}{84} \][/tex]
5. Now, with a common denominator, add the two fractions:
[tex]\[ -\frac{3}{84} + \frac{2}{84} = \frac{-3 + 2}{84} = \frac{-1}{84} \][/tex]
6. Thus, the result of the expression is:
[tex]\[ -\frac{1}{84} \][/tex]
To summarize the steps clearly:
- Simplify \(-\left(-\frac{1}{42}\right)\) to \(\frac{1}{42}\).
- Find a common denominator for the fractions, converting them to \(-\frac{3}{84}\) and \(\frac{2}{84}\).
- Add these fractions to get \(\frac{-1}{84}\).
The final result is [tex]\(\boxed{-\frac{1}{84}}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.