Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's determine the locations of any relative extrema and identify any saddle points for the given function:
[tex]\[ f(x, y) = -3x^2 - 5xy - 3y^2 - 15x - 18y + 5 \][/tex]
### Step 1: Find the first partial derivatives
First, we need to calculate the partial derivatives of \( f \) with respect to \( x \) and \( y \):
[tex]\[ f_x = \frac{\partial f}{\partial x} \][/tex]
[tex]\[ f_x = -6x - 5y - 15 \][/tex]
[tex]\[ f_y = \frac{\partial f}{\partial y} \][/tex]
[tex]\[ f_y = -5x - 6y - 18 \][/tex]
### Step 2: Find critical points
To find the critical points, we set the first partial derivatives equal to zero and solve the resulting system of equations:
[tex]\[ -6x - 5y - 15 = 0 \][/tex]
[tex]\[ -5x - 6y - 18 = 0 \][/tex]
Solving this system of linear equations, we can use substitution or elimination method:
Multiply the first equation by 6 and the second by 5 to facilitate elimination of \( y \):
[tex]\[ -36x - 30y - 90 = 0 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -25x - 30y - 90 = 0 \quad \text{(Equation 2)} \][/tex]
Now subtract Equation 2 from Equation 1:
[tex]\[ (-36x - 30y - 90) - (-25x - 30y - 90) = 0 \][/tex]
[tex]\[ -36x + 25x = 0 \][/tex]
[tex]\[ -11x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
Substitute \( x = 0 \) back into one of the original equations, say \( -6x - 5y - 15 = 0 \):
[tex]\[ -6(0) - 5y - 15 = 0 \][/tex]
[tex]\[ -5y - 15 = 0 \][/tex]
[tex]\[ -5y = 15 \][/tex]
[tex]\[ y = -3 \][/tex]
So, the critical point is:
[tex]\[ (x, y) = (0, -3) \][/tex]
### Step 3: Find the second partial derivatives
Now, we need to find the second partial derivatives to determine the nature of the critical point:
[tex]\[ f_{xx} = \frac{\partial^2 f}{\partial x^2} \][/tex]
[tex]\[ f_{xx} = -6 \][/tex]
[tex]\[ f_{yy} = \frac{\partial^2 f}{\partial y^2} \][/tex]
[tex]\[ f_{yy} = -6 \][/tex]
[tex]\[ f_{xy} = \frac{\partial^2 f}{\partial x \partial y} \][/tex]
[tex]\[ f_{xy} = -5 \][/tex]
### Step 4: Evaluate the Hessian determinant
The Hessian determinant \( D \) at the critical point \((0, -3)\) is given by:
[tex]\[ D = f_{xx}f_{yy} - (f_{xy})^2 \][/tex]
[tex]\[ D = (-6)(-6) - (-5)^2 \][/tex]
[tex]\[ D = 36 - 25 \][/tex]
[tex]\[ D = 11 \][/tex]
### Step 5: Classify the critical point
Since \( D > 0 \) and \( f_{xx} < 0 \):
- The critical point \((0, -3)\) is a relative maximum.
Therefore, the correct answer is:
B. There are no relative maxima.
[tex]\[ f(x, y) = -3x^2 - 5xy - 3y^2 - 15x - 18y + 5 \][/tex]
### Step 1: Find the first partial derivatives
First, we need to calculate the partial derivatives of \( f \) with respect to \( x \) and \( y \):
[tex]\[ f_x = \frac{\partial f}{\partial x} \][/tex]
[tex]\[ f_x = -6x - 5y - 15 \][/tex]
[tex]\[ f_y = \frac{\partial f}{\partial y} \][/tex]
[tex]\[ f_y = -5x - 6y - 18 \][/tex]
### Step 2: Find critical points
To find the critical points, we set the first partial derivatives equal to zero and solve the resulting system of equations:
[tex]\[ -6x - 5y - 15 = 0 \][/tex]
[tex]\[ -5x - 6y - 18 = 0 \][/tex]
Solving this system of linear equations, we can use substitution or elimination method:
Multiply the first equation by 6 and the second by 5 to facilitate elimination of \( y \):
[tex]\[ -36x - 30y - 90 = 0 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -25x - 30y - 90 = 0 \quad \text{(Equation 2)} \][/tex]
Now subtract Equation 2 from Equation 1:
[tex]\[ (-36x - 30y - 90) - (-25x - 30y - 90) = 0 \][/tex]
[tex]\[ -36x + 25x = 0 \][/tex]
[tex]\[ -11x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
Substitute \( x = 0 \) back into one of the original equations, say \( -6x - 5y - 15 = 0 \):
[tex]\[ -6(0) - 5y - 15 = 0 \][/tex]
[tex]\[ -5y - 15 = 0 \][/tex]
[tex]\[ -5y = 15 \][/tex]
[tex]\[ y = -3 \][/tex]
So, the critical point is:
[tex]\[ (x, y) = (0, -3) \][/tex]
### Step 3: Find the second partial derivatives
Now, we need to find the second partial derivatives to determine the nature of the critical point:
[tex]\[ f_{xx} = \frac{\partial^2 f}{\partial x^2} \][/tex]
[tex]\[ f_{xx} = -6 \][/tex]
[tex]\[ f_{yy} = \frac{\partial^2 f}{\partial y^2} \][/tex]
[tex]\[ f_{yy} = -6 \][/tex]
[tex]\[ f_{xy} = \frac{\partial^2 f}{\partial x \partial y} \][/tex]
[tex]\[ f_{xy} = -5 \][/tex]
### Step 4: Evaluate the Hessian determinant
The Hessian determinant \( D \) at the critical point \((0, -3)\) is given by:
[tex]\[ D = f_{xx}f_{yy} - (f_{xy})^2 \][/tex]
[tex]\[ D = (-6)(-6) - (-5)^2 \][/tex]
[tex]\[ D = 36 - 25 \][/tex]
[tex]\[ D = 11 \][/tex]
### Step 5: Classify the critical point
Since \( D > 0 \) and \( f_{xx} < 0 \):
- The critical point \((0, -3)\) is a relative maximum.
Therefore, the correct answer is:
B. There are no relative maxima.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.