Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the critical points of the function \( f(x, y) = 7 x^2 + 9 y^2 + 2 x y + 32 x - 6 \), we need to solve for \( x \) and \( y \) such that both partial derivatives \( f_x(x, y) = 0 \) and \( f_y(x, y) = 0 \).
First, we find the partial derivatives of the function \( f(x, y) \):
1. Compute the partial derivative with respect to \( x \):
[tex]\[ f_x(x, y) = \frac{\partial}{\partial x} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_x(x, y) = 14 x + 2 y + 32 \][/tex]
2. Compute the partial derivative with respect to \( y \):
[tex]\[ f_y(x, y) = \frac{\partial}{\partial y} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_y(x, y) = 18 y + 2 x \][/tex]
Next, we set the partial derivatives to zero to find the critical points:
[tex]\[ 14 x + 2 y + 32 = 0 \][/tex]
[tex]\[ 18 y + 2 x = 0 \][/tex]
We now solve this system of linear equations. First, solve the second equation for \( x \):
[tex]\[ 2 x + 18 y = 0 \implies x = -9 y \][/tex]
Substitute \( x = -9 y \) into the first equation:
[tex]\[ 14 (-9 y) + 2 y + 32 = 0 \][/tex]
[tex]\[ -126 y + 2 y + 32 = 0 \][/tex]
[tex]\[ -124 y + 32 = 0 \][/tex]
[tex]\[ -124 y = -32 \][/tex]
[tex]\[ y = \frac{32}{124} = \frac{8}{31} \][/tex]
Substitute \( y = \frac{8}{31} \) back into \( x = -9 y \):
[tex]\[ x = -9 \left(\frac{8}{31}\right) = -\frac{72}{31} \][/tex]
Therefore, the solution is:
[tex]\[ x = -\frac{72}{31}, \quad y = \frac{8}{31} \][/tex]
Thus, the correct choice is:
[tex]$\square$[/tex] A. There is only one solution where [tex]\( f_x(x, y) = 0 \)[/tex] and [tex]\( f_y(x, y) = 0 \)[/tex], when [tex]\( x = -\frac{72}{31} \)[/tex] and [tex]\( y = \frac{8}{31} \)[/tex].
First, we find the partial derivatives of the function \( f(x, y) \):
1. Compute the partial derivative with respect to \( x \):
[tex]\[ f_x(x, y) = \frac{\partial}{\partial x} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_x(x, y) = 14 x + 2 y + 32 \][/tex]
2. Compute the partial derivative with respect to \( y \):
[tex]\[ f_y(x, y) = \frac{\partial}{\partial y} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_y(x, y) = 18 y + 2 x \][/tex]
Next, we set the partial derivatives to zero to find the critical points:
[tex]\[ 14 x + 2 y + 32 = 0 \][/tex]
[tex]\[ 18 y + 2 x = 0 \][/tex]
We now solve this system of linear equations. First, solve the second equation for \( x \):
[tex]\[ 2 x + 18 y = 0 \implies x = -9 y \][/tex]
Substitute \( x = -9 y \) into the first equation:
[tex]\[ 14 (-9 y) + 2 y + 32 = 0 \][/tex]
[tex]\[ -126 y + 2 y + 32 = 0 \][/tex]
[tex]\[ -124 y + 32 = 0 \][/tex]
[tex]\[ -124 y = -32 \][/tex]
[tex]\[ y = \frac{32}{124} = \frac{8}{31} \][/tex]
Substitute \( y = \frac{8}{31} \) back into \( x = -9 y \):
[tex]\[ x = -9 \left(\frac{8}{31}\right) = -\frac{72}{31} \][/tex]
Therefore, the solution is:
[tex]\[ x = -\frac{72}{31}, \quad y = \frac{8}{31} \][/tex]
Thus, the correct choice is:
[tex]$\square$[/tex] A. There is only one solution where [tex]\( f_x(x, y) = 0 \)[/tex] and [tex]\( f_y(x, y) = 0 \)[/tex], when [tex]\( x = -\frac{72}{31} \)[/tex] and [tex]\( y = \frac{8}{31} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.