At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which equation represents the line that passes through the point \(\left(4, \frac{1}{3}\right)\) and has a slope of \(\frac{3}{4}\), we can use the point-slope form of the line equation. The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \((x_1, y_1)\) is a point on the line and \(m\) is the slope.
Here, \((x_1, y_1) = \left(4, \frac{1}{3}\right)\) and \(m = \frac{3}{4}\).
Substituting these values into the point-slope form equation, we get:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Looking through the options given:
1. \( y - \frac{3}{4} = \frac{1}{3}(x - 4) \)
2. \( y - \frac{1}{3} = \frac{3}{4}(x - 4) \)
3. \( y - \frac{1}{3} = 4\left(x - \frac{3}{4}\right) \)
4. \( y - 4 = \frac{3}{4}\left(x - \frac{1}{3}\right) \)
Clearly, option 2 matches our derived equation exactly:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Thus:
The equation that represents a line that passes through \(\left(4, \frac{1}{3}\right)\) and has a slope of \(\frac{3}{4}\) is:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Therefore, the correct option is:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
which corresponds to option 2.
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \((x_1, y_1)\) is a point on the line and \(m\) is the slope.
Here, \((x_1, y_1) = \left(4, \frac{1}{3}\right)\) and \(m = \frac{3}{4}\).
Substituting these values into the point-slope form equation, we get:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Looking through the options given:
1. \( y - \frac{3}{4} = \frac{1}{3}(x - 4) \)
2. \( y - \frac{1}{3} = \frac{3}{4}(x - 4) \)
3. \( y - \frac{1}{3} = 4\left(x - \frac{3}{4}\right) \)
4. \( y - 4 = \frac{3}{4}\left(x - \frac{1}{3}\right) \)
Clearly, option 2 matches our derived equation exactly:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Thus:
The equation that represents a line that passes through \(\left(4, \frac{1}{3}\right)\) and has a slope of \(\frac{3}{4}\) is:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Therefore, the correct option is:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
which corresponds to option 2.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.