Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to determine whether the given numbers satisfy the inequality, and if they also represent whole non-negative numbers of cups sold by Bernie.
Let's first analyze the inequality we are given:
[tex]\[ 20 \leq 1.50x - 6.50 \][/tex]
To check if each number satisfies the inequality, we'll substitute each number into \( x \) and see if the inequality holds true.
Step-by-Step Analysis:
1. Check \( x = 18 \):
[tex]\[ 1.50 \times 18 - 6.50 = 27 - 6.50 = 20.50 \][/tex]
Since \( 20 \leq 20.50 \), \( x = 18 \) satisfies the inequality.
- It is a non-negative integer, hence it is a solution to both the inequality and the situation.
2. Check \( x = 23 \):
[tex]\[ 1.50 \times 23 - 6.50 = 34.50 - 6.50 = 28 \][/tex]
Since \( 20 \leq 28 \), \( x = 23 \) satisfies the inequality.
- It is a non-negative integer, hence it is a solution to both the inequality and the situation.
3. Check \( x = 10 \):
[tex]\[ 1.50 \times 10 - 6.50 = 15 - 6.50 = 8.50 \][/tex]
Since \( 20 \leq 8.50 \) is false, \( x = 10 \) does not satisfy the inequality.
- It is not a solution.
4. Check \( x = 17.7 \):
[tex]\[ 1.50 \times 17.7 - 6.50 = 26.55 - 6.50 = 20.05 \][/tex]
Since \( 20 \leq 20.05 \), \( x = 17.7 \) satisfies the inequality.
- It is not a whole number (cups sold must be integer), so it is a solution to the inequality only.
5. Check \( x = -4 \):
[tex]\[ 1.50 \times -4 - 6.50 = -6 - 6.50 = -12.50 \][/tex]
Since \( 20 \leq -12.50 \) is false, \( x = -4 \) does not satisfy the inequality.
- It is not a solution.
6. Check \( x = 35.5 \):
[tex]\[ 1.50 \times 35.5 - 6.50 = 53.25 - 6.50 = 46.75 \][/tex]
Since \( 20 \leq 46.75 \), \( x = 35.5 \) satisfies the inequality.
- It is not a whole number (cups sold must be integer), so it is a solution to the inequality only.
Summary of Classification:
- Solution to both the inequality and the situation:
- 18, 23
- Solution to the inequality only:
- 17.7, 35.5
- Not a solution:
- 10, -4
Thus, we can classify each number as follows:
- Solution to both the inequality and the problem situation: 18, 23
- Solution to the inequality only: 17.7, 35.5
- Not a solution: 10, -4
Let's first analyze the inequality we are given:
[tex]\[ 20 \leq 1.50x - 6.50 \][/tex]
To check if each number satisfies the inequality, we'll substitute each number into \( x \) and see if the inequality holds true.
Step-by-Step Analysis:
1. Check \( x = 18 \):
[tex]\[ 1.50 \times 18 - 6.50 = 27 - 6.50 = 20.50 \][/tex]
Since \( 20 \leq 20.50 \), \( x = 18 \) satisfies the inequality.
- It is a non-negative integer, hence it is a solution to both the inequality and the situation.
2. Check \( x = 23 \):
[tex]\[ 1.50 \times 23 - 6.50 = 34.50 - 6.50 = 28 \][/tex]
Since \( 20 \leq 28 \), \( x = 23 \) satisfies the inequality.
- It is a non-negative integer, hence it is a solution to both the inequality and the situation.
3. Check \( x = 10 \):
[tex]\[ 1.50 \times 10 - 6.50 = 15 - 6.50 = 8.50 \][/tex]
Since \( 20 \leq 8.50 \) is false, \( x = 10 \) does not satisfy the inequality.
- It is not a solution.
4. Check \( x = 17.7 \):
[tex]\[ 1.50 \times 17.7 - 6.50 = 26.55 - 6.50 = 20.05 \][/tex]
Since \( 20 \leq 20.05 \), \( x = 17.7 \) satisfies the inequality.
- It is not a whole number (cups sold must be integer), so it is a solution to the inequality only.
5. Check \( x = -4 \):
[tex]\[ 1.50 \times -4 - 6.50 = -6 - 6.50 = -12.50 \][/tex]
Since \( 20 \leq -12.50 \) is false, \( x = -4 \) does not satisfy the inequality.
- It is not a solution.
6. Check \( x = 35.5 \):
[tex]\[ 1.50 \times 35.5 - 6.50 = 53.25 - 6.50 = 46.75 \][/tex]
Since \( 20 \leq 46.75 \), \( x = 35.5 \) satisfies the inequality.
- It is not a whole number (cups sold must be integer), so it is a solution to the inequality only.
Summary of Classification:
- Solution to both the inequality and the situation:
- 18, 23
- Solution to the inequality only:
- 17.7, 35.5
- Not a solution:
- 10, -4
Thus, we can classify each number as follows:
- Solution to both the inequality and the problem situation: 18, 23
- Solution to the inequality only: 17.7, 35.5
- Not a solution: 10, -4
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.