At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

The information below describes a redox reaction.

[tex]\[
\begin{array}{l}
Cr^{3+}(aq) + 2Cl^{-}(aq) \longrightarrow Cr(s) + Cl_2(g) \\
2Cl^{-}(aq) \longrightarrow Cl_2(g) + 2e^{-} \\
Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s)
\end{array}
\][/tex]

What is the final, balanced equation for this reaction?

A. \(2Cr^{3+}(aq) + 6Cl^{-}(aq) \longrightarrow 2Cr(s) + 3Cl_2(g)\)

B. \(2Cr^{3+}(aq) + 2Cl^{-}(aq) + 6e^{-} \longrightarrow Cl_2(g) + 2Cr(s)\)

C. \(Cr^{3+}(aq) + BCl^{-}(aq) + 3e^{-} \longrightarrow 2Cr(s) + 3Cl_2(g)\)

D. [tex]\(Cr^{3+}(aq) + 2Cl^{-}(aq) \longrightarrow Cr(s) + Cl_2(g)\)[/tex]


Sagot :

To determine the final balanced equation for the given redox reaction, we need to follow a step-by-step approach to balance both the atoms and the charges.

### Step 1: Write the Half-Reactions

The given redox reaction can be split into two half-reactions:
1. The oxidation half-reaction for chlorine:
[tex]\[ 2 Cl^{-}(aq) \longrightarrow Cl_2(g) + 2 e^- \][/tex]

2. The reduction half-reaction for chromium:
[tex]\[ Cr^{3+}(aq) + 3 e^- \longrightarrow Cr(s) \][/tex]

### Step 2: Balance the Electrons

To ensure electron balance between the oxidation and reduction half-reactions, we need to match the number of electrons lost and gained in both processes. In the oxidation half-reaction, 2 electrons are released, and in the reduction half-reaction, 3 electrons are gained. To balance the electrons, the common multiple of 2 and 3 is 6. Thus:

- Multiply the chlorine oxidation half-reaction by 3:
[tex]\[ 3(2 Cl^{-}(aq) \longrightarrow Cl_2(g) + 2 e^-) \Rightarrow 6 Cl^{-}(aq) \longrightarrow 3 Cl_2(g) + 6 e^- \][/tex]

- Multiply the chromium reduction half-reaction by 2:
[tex]\[ 2(Cr^{3+}(aq) + 3 e^- \longrightarrow Cr(s)) \Rightarrow 2 Cr^{3+}(aq) + 6 e^- \longrightarrow 2 Cr(s) \][/tex]

### Step 3: Combine the Half-Reactions

Now, we combine the two balanced half-reactions, ensuring to cancel out the electrons:

[tex]\[ 6 Cl^{-}(aq) \longrightarrow 3 Cl_2(g) + 6 e^- \][/tex]
[tex]\[ 2 Cr^{3+}(aq) + 6 e^- \longrightarrow 2 Cr(s) \][/tex]

When combined:
[tex]\[ 6 Cl^{-}(aq) + 2 Cr^{3+}(aq) \longrightarrow 3 Cl_2(g) + 2 Cr(s) \][/tex]

### Step 4: Write the Balanced Equation

The final balanced redox reaction equation becomes:
[tex]\[ 2 Cr^{3+}(aq) + 6 Cl^{-}(aq) \longrightarrow 2 Cr(s) + 3 Cl_2(g) \][/tex]

So, the correct balanced equation for the given redox reaction is:
[tex]\[ 2 Cr^{3+}(aq) + 6 Cl^{-}(aq) \longrightarrow 2 Cr(s) + 3 Cl_2(g) \][/tex]

This confirms that among the provided options, the first one is the correct balanced equation:
[tex]\[2 Cr^{3+}(aq) + 6 Cl^{-}(aq) \longrightarrow 2 Cr(s) + 3 Cl_2(g)\][/tex]