At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's carefully analyze each equation step-by-step to determine which one has infinitely many solutions.
### Equation A:
[tex]\[ -6.8 + 3y + 2.4 = 4.3 - 3y \][/tex]
1. Combine like terms on the left-hand side:
[tex]\[ -6.8 + 2.4 + 3y = -4.4 + 3y \][/tex]
[tex]\[ -4.4 + 3y = 4.3 - 3y \][/tex]
2. Move all \( y \)-terms to one side:
[tex]\[ 3y + 3y = 4.3 + 4.4 \][/tex]
[tex]\[ 6y = 8.7 \][/tex]
3. Simplify:
[tex]\[ y = \frac{8.7}{6} = 1.45 \][/tex]
This equation has a single solution.
### Equation B:
[tex]\[ \frac{1}{3}y + 2.5 - \frac{2}{3}y = 1.2 \][/tex]
1. Combine like terms:
[tex]\[ (\frac{1}{3} - \frac{2}{3})y + 2.5 = 1.2 \][/tex]
[tex]\[ -\frac{1}{3}y + 2.5 = 1.2 \][/tex]
2. Move constant terms to the other side:
[tex]\[ -\frac{1}{3}y = 1.2 - 2.5 \][/tex]
[tex]\[ -\frac{1}{3}y = -1.3 \][/tex]
3. Simplify:
[tex]\[ y = \frac{-1.3 \cdot 3}{-1} \][/tex]
[tex]\[ y = 3.9 \][/tex]
This equation has a single solution.
### Equation C:
[tex]\[ 5.1 + 2y + 1.2 = -2 + 2y + 8.3 \][/tex]
1. Combine like terms on both sides:
[tex]\[ 5.1 + 1.2 + 2y = 6.1 + 2y \][/tex]
[tex]\[ 6.3 + 2y = 6.3 + 2y \][/tex]
We observe here that both sides are identical:
[tex]\[ 6.3 + 2y = 6.3 + 2y \][/tex]
Since this equation holds true for any value of \( y \), it has infinitely many solutions.
### Equation D:
[tex]\[ \frac{2}{5} y = 2.3 + \frac{3}{2} y \][/tex]
1. Move all \( y \)-terms to one side:
[tex]\[ \frac{2}{5} y - \frac{3}{2} y = 2.3 \][/tex]
[tex]\[ \left( \frac{4}{10} - \frac{15}{10} \right) y = 2.3 \][/tex]
[tex]\[ -\frac{11}{10} y = 2.3 \][/tex]
2. Simplify:
[tex]\[ y = \frac{-2.3 \cdot 10}{11} \][/tex]
[tex]\[ y = -\frac{23}{11} = -2.09 \][/tex]
This equation has a single solution.
### Conclusion
From the detailed analysis, we see that Equation C has infinitely many solutions. Therefore, the correct answer is:
[tex]\[ \boxed{1} \][/tex]
### Equation A:
[tex]\[ -6.8 + 3y + 2.4 = 4.3 - 3y \][/tex]
1. Combine like terms on the left-hand side:
[tex]\[ -6.8 + 2.4 + 3y = -4.4 + 3y \][/tex]
[tex]\[ -4.4 + 3y = 4.3 - 3y \][/tex]
2. Move all \( y \)-terms to one side:
[tex]\[ 3y + 3y = 4.3 + 4.4 \][/tex]
[tex]\[ 6y = 8.7 \][/tex]
3. Simplify:
[tex]\[ y = \frac{8.7}{6} = 1.45 \][/tex]
This equation has a single solution.
### Equation B:
[tex]\[ \frac{1}{3}y + 2.5 - \frac{2}{3}y = 1.2 \][/tex]
1. Combine like terms:
[tex]\[ (\frac{1}{3} - \frac{2}{3})y + 2.5 = 1.2 \][/tex]
[tex]\[ -\frac{1}{3}y + 2.5 = 1.2 \][/tex]
2. Move constant terms to the other side:
[tex]\[ -\frac{1}{3}y = 1.2 - 2.5 \][/tex]
[tex]\[ -\frac{1}{3}y = -1.3 \][/tex]
3. Simplify:
[tex]\[ y = \frac{-1.3 \cdot 3}{-1} \][/tex]
[tex]\[ y = 3.9 \][/tex]
This equation has a single solution.
### Equation C:
[tex]\[ 5.1 + 2y + 1.2 = -2 + 2y + 8.3 \][/tex]
1. Combine like terms on both sides:
[tex]\[ 5.1 + 1.2 + 2y = 6.1 + 2y \][/tex]
[tex]\[ 6.3 + 2y = 6.3 + 2y \][/tex]
We observe here that both sides are identical:
[tex]\[ 6.3 + 2y = 6.3 + 2y \][/tex]
Since this equation holds true for any value of \( y \), it has infinitely many solutions.
### Equation D:
[tex]\[ \frac{2}{5} y = 2.3 + \frac{3}{2} y \][/tex]
1. Move all \( y \)-terms to one side:
[tex]\[ \frac{2}{5} y - \frac{3}{2} y = 2.3 \][/tex]
[tex]\[ \left( \frac{4}{10} - \frac{15}{10} \right) y = 2.3 \][/tex]
[tex]\[ -\frac{11}{10} y = 2.3 \][/tex]
2. Simplify:
[tex]\[ y = \frac{-2.3 \cdot 10}{11} \][/tex]
[tex]\[ y = -\frac{23}{11} = -2.09 \][/tex]
This equation has a single solution.
### Conclusion
From the detailed analysis, we see that Equation C has infinitely many solutions. Therefore, the correct answer is:
[tex]\[ \boxed{1} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.