Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the inverse of the function \( f(x) = \frac{1}{3} - \frac{1}{21} x \), we need to follow these steps:
1. Rewrite the function: Begin with the equation that defines \( f(x) \):
[tex]\[ y = \frac{1}{3} - \frac{1}{21} x \][/tex]
2. Swap \(x\) and \(y\): Interchange the roles of \(x\) and \(y\) because we are now solving for the inverse function:
[tex]\[ x = \frac{1}{3} - \frac{1}{21} y \][/tex]
3. Solve for \(y\): Isolate \(y\) to express it in terms of \(x\). Start by moving the constant on the right-hand side:
[tex]\[ x - \frac{1}{3} = - \frac{1}{21} y \][/tex]
[tex]\[ - \frac{1}{21} y = x - \frac{1}{3} \][/tex]
Now, multiply both sides by \(-21\) to solve for \(y\):
[tex]\[ y = -21 (x - \frac{1}{3}) \][/tex]
4. Simplify the expression for \(y\): Distribute the \(-21\):
[tex]\[ y = -21x + 7 \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = 7 - 21x \][/tex]
5. Compare with the given choices: Let's identify if this matches any of the provided options:
A. \(f^{-1}(x) = 7 - 21x\)
B. \(f^{-1}(x) = \frac{1}{7} - \frac{1}{21} x\)
C. \(f^{-1}(x) = \frac{1}{7} - 21x\)
D. \(f^{-1}(x) = 7 - \frac{1}{21} x\)
Clearly, the correct answer is:
[tex]\[ \boxed{A. \; f^{-1}(x) = 7 - 21x} \][/tex]
1. Rewrite the function: Begin with the equation that defines \( f(x) \):
[tex]\[ y = \frac{1}{3} - \frac{1}{21} x \][/tex]
2. Swap \(x\) and \(y\): Interchange the roles of \(x\) and \(y\) because we are now solving for the inverse function:
[tex]\[ x = \frac{1}{3} - \frac{1}{21} y \][/tex]
3. Solve for \(y\): Isolate \(y\) to express it in terms of \(x\). Start by moving the constant on the right-hand side:
[tex]\[ x - \frac{1}{3} = - \frac{1}{21} y \][/tex]
[tex]\[ - \frac{1}{21} y = x - \frac{1}{3} \][/tex]
Now, multiply both sides by \(-21\) to solve for \(y\):
[tex]\[ y = -21 (x - \frac{1}{3}) \][/tex]
4. Simplify the expression for \(y\): Distribute the \(-21\):
[tex]\[ y = -21x + 7 \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = 7 - 21x \][/tex]
5. Compare with the given choices: Let's identify if this matches any of the provided options:
A. \(f^{-1}(x) = 7 - 21x\)
B. \(f^{-1}(x) = \frac{1}{7} - \frac{1}{21} x\)
C. \(f^{-1}(x) = \frac{1}{7} - 21x\)
D. \(f^{-1}(x) = 7 - \frac{1}{21} x\)
Clearly, the correct answer is:
[tex]\[ \boxed{A. \; f^{-1}(x) = 7 - 21x} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.