Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's find \(\tan(2t)\) using the double-angle formula for tangent. Given:
[tex]\[ \pi < t < \frac{3\pi}{2} \quad \text{and} \quad \tan(t) = 7 \][/tex]
We want to find \(\tan(2t)\). The double-angle formula for tangent is:
[tex]\[ \tan(2t) = \frac{2 \tan(t)}{1 - \tan^2(t)} \][/tex]
Substitute \(\tan(t) = 7\) into the formula:
[tex]\[ \tan(2t) = \frac{2 \cdot 7}{1 - 7^2} \][/tex]
Calculate the expressions in the numerator and the denominator:
[tex]\[ \tan(2t) = \frac{14}{1 - 49} \][/tex]
Simplify the denominator:
[tex]\[ \tan(2t) = \frac{14}{-48} \][/tex]
Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 2:
[tex]\[ \tan(2t) = \frac{14 \div 2}{-48 \div 2} = \frac{7}{-24} \][/tex]
Thus, the exact value is:
[tex]\[ \tan(2t) = -\frac{7}{24} \][/tex]
[tex]\[ \pi < t < \frac{3\pi}{2} \quad \text{and} \quad \tan(t) = 7 \][/tex]
We want to find \(\tan(2t)\). The double-angle formula for tangent is:
[tex]\[ \tan(2t) = \frac{2 \tan(t)}{1 - \tan^2(t)} \][/tex]
Substitute \(\tan(t) = 7\) into the formula:
[tex]\[ \tan(2t) = \frac{2 \cdot 7}{1 - 7^2} \][/tex]
Calculate the expressions in the numerator and the denominator:
[tex]\[ \tan(2t) = \frac{14}{1 - 49} \][/tex]
Simplify the denominator:
[tex]\[ \tan(2t) = \frac{14}{-48} \][/tex]
Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 2:
[tex]\[ \tan(2t) = \frac{14 \div 2}{-48 \div 2} = \frac{7}{-24} \][/tex]
Thus, the exact value is:
[tex]\[ \tan(2t) = -\frac{7}{24} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.