Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve for the force between two charged objects using Coulomb's law, we can follow these steps:
1. Identify the given values:
- Charge of object \( A \), \( q_1 = 4.0 \times 10^{-6} \, C \)
- Charge of object \( B \), \( q_2 = 2.0 \times 10^{-6} \, C \)
- Distance between the objects, \( r = 0.04 \, m \)
- Coulomb's constant, \( k = 9.0 \times 10^9 \, N \cdot m^2 / C^2 \)
2. Write down Coulomb's law:
[tex]\[ F = k \cdot \frac{q_1 \cdot q_2}{r^2} \][/tex]
Where:
- \( F \) is the force between the two charges
- \( k \) is Coulomb's constant
- \( q_1 \) and \( q_2 \) are the magnitudes of the two charges
- \( r \) is the distance between the charges
3. Substitute the given values into Coulomb's law:
[tex]\[ F = 9.0 \times 10^9 \, \frac{N \cdot m^2}{C^2} \cdot \frac{(4.0 \times 10^{-6} \, C) \cdot (2.0 \times 10^{-6} \, C)}{(0.04 \, m)^2} \][/tex]
4. Calculate the product of the charges:
[tex]\[ q_1 \cdot q_2 = (4.0 \times 10^{-6}) \cdot (2.0 \times 10^{-6}) = 8.0 \times 10^{-12} \, C^2 \][/tex]
5. Calculate the square of the distance:
[tex]\[ r^2 = (0.04 \, m)^2 = 0.0016 \, m^2 \][/tex]
6. Combine the values and solve for \( F \):
[tex]\[ F = 9.0 \times 10^9 \, \frac{N \cdot m^2}{C^2} \cdot \frac{8.0 \times 10^{-12} \, C^2}{0.0016 \, m^2} \][/tex]
7. Divide the product of the charges by the distance squared:
[tex]\[ \frac{8.0 \times 10^{-12} \, C^2}{0.0016 \, m^2} = 5.0 \times 10^{-9} \, C^2 / m^2 \][/tex]
8. Multiply by Coulomb’s constant:
[tex]\[ F = 9.0 \times 10^9 \cdot 5.0 \times 10^{-9} = 45 \, N \][/tex]
Therefore, the force on \( A \) is \( 45 \, N \). The correct answer is:
[tex]\[ \boxed{45 \, N} \][/tex]
1. Identify the given values:
- Charge of object \( A \), \( q_1 = 4.0 \times 10^{-6} \, C \)
- Charge of object \( B \), \( q_2 = 2.0 \times 10^{-6} \, C \)
- Distance between the objects, \( r = 0.04 \, m \)
- Coulomb's constant, \( k = 9.0 \times 10^9 \, N \cdot m^2 / C^2 \)
2. Write down Coulomb's law:
[tex]\[ F = k \cdot \frac{q_1 \cdot q_2}{r^2} \][/tex]
Where:
- \( F \) is the force between the two charges
- \( k \) is Coulomb's constant
- \( q_1 \) and \( q_2 \) are the magnitudes of the two charges
- \( r \) is the distance between the charges
3. Substitute the given values into Coulomb's law:
[tex]\[ F = 9.0 \times 10^9 \, \frac{N \cdot m^2}{C^2} \cdot \frac{(4.0 \times 10^{-6} \, C) \cdot (2.0 \times 10^{-6} \, C)}{(0.04 \, m)^2} \][/tex]
4. Calculate the product of the charges:
[tex]\[ q_1 \cdot q_2 = (4.0 \times 10^{-6}) \cdot (2.0 \times 10^{-6}) = 8.0 \times 10^{-12} \, C^2 \][/tex]
5. Calculate the square of the distance:
[tex]\[ r^2 = (0.04 \, m)^2 = 0.0016 \, m^2 \][/tex]
6. Combine the values and solve for \( F \):
[tex]\[ F = 9.0 \times 10^9 \, \frac{N \cdot m^2}{C^2} \cdot \frac{8.0 \times 10^{-12} \, C^2}{0.0016 \, m^2} \][/tex]
7. Divide the product of the charges by the distance squared:
[tex]\[ \frac{8.0 \times 10^{-12} \, C^2}{0.0016 \, m^2} = 5.0 \times 10^{-9} \, C^2 / m^2 \][/tex]
8. Multiply by Coulomb’s constant:
[tex]\[ F = 9.0 \times 10^9 \cdot 5.0 \times 10^{-9} = 45 \, N \][/tex]
Therefore, the force on \( A \) is \( 45 \, N \). The correct answer is:
[tex]\[ \boxed{45 \, N} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.