Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's break down the given expression and simplify it step by step:
The given expression is:
[tex]\[ \frac{1}{xy} - 2x + y + \frac{\text{correction}}{y+2} \][/tex]
Let's analyze each term separately:
1. The first term:
[tex]\[ \frac{1}{xy} \][/tex]
This term is already in its simplest form.
2. The second term:
[tex]\[ -2x \][/tex]
This term is also in its simplest form and represents a linear expression in \(x\).
3. The third term:
[tex]\[ y \][/tex]
This term is a simple linear expression in \(y\).
4. The fourth term:
[tex]\[ \frac{\text{correction}}{y+2} \][/tex]
This term represents a fraction where "correction" is divided by \(y + 2\).
Now, let's combine all these simplified parts into a single expression, maintaining the order of operations:
[tex]\[ \frac{1}{xy} - 2x + y + \frac{\text{correction}}{y+2} \][/tex]
This should be the simplified form of the expression in question:
[tex]\[ \frac{\text{correction}}{y+2} - 2x + y + \frac{1}{xy} \][/tex]
Thus, the final simplified expression is:
[tex]\[ \frac{\text{correction}}{y+2} - 2x + y + \frac{1}{xy} \][/tex]
The given expression is:
[tex]\[ \frac{1}{xy} - 2x + y + \frac{\text{correction}}{y+2} \][/tex]
Let's analyze each term separately:
1. The first term:
[tex]\[ \frac{1}{xy} \][/tex]
This term is already in its simplest form.
2. The second term:
[tex]\[ -2x \][/tex]
This term is also in its simplest form and represents a linear expression in \(x\).
3. The third term:
[tex]\[ y \][/tex]
This term is a simple linear expression in \(y\).
4. The fourth term:
[tex]\[ \frac{\text{correction}}{y+2} \][/tex]
This term represents a fraction where "correction" is divided by \(y + 2\).
Now, let's combine all these simplified parts into a single expression, maintaining the order of operations:
[tex]\[ \frac{1}{xy} - 2x + y + \frac{\text{correction}}{y+2} \][/tex]
This should be the simplified form of the expression in question:
[tex]\[ \frac{\text{correction}}{y+2} - 2x + y + \frac{1}{xy} \][/tex]
Thus, the final simplified expression is:
[tex]\[ \frac{\text{correction}}{y+2} - 2x + y + \frac{1}{xy} \][/tex]
Answer:
x = 2/3
Step-by-step explanation:
3x = 6x - 2
-3x = -2
x = 2/3
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.