Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find a cascaded realization for the transfer function
[tex]\[ H(z) = \frac{z^2 (6z - 2)}{(z-1) \left(z^2 - \frac{1}{6}z - \frac{1}{6}\right)} \][/tex]
we will factorize both the numerator and the denominator into their respective roots and then express \( H(z) \) in terms of its zeros and poles.
### Step 1: Factorize the Numerator
The numerator of the transfer function is given by:
[tex]\[ z^2 (6z - 2) \][/tex]
We can express this in factored form as:
[tex]\[ z^2 (6z - 2) = z^2 \cdot 2(3z - 1) = 2z^2(3z - 1) \][/tex]
The numerator has roots at \( z = 0 \) and \( z = \frac{1}{3} \). Thus, the numerator can be written as:
[tex]\[ 2z^2 (z - \frac{1}{3}) \][/tex]
### Step 2: Factorize the Denominator
The denominator of the transfer function is given by:
[tex]\[ (z-1) \left(z^2 - \frac{1}{6}z - \frac{1}{6}\right) \][/tex]
We need to solve the quadratic equation:
[tex]\[ z^2 - \frac{1}{6}z - \frac{1}{6} = 0 \][/tex]
The roots of this quadratic equation are obtained using the quadratic formula:
[tex]\[ z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where \( a = 1 \), \( b = -\frac{1}{6} \), and \( c = -\frac{1}{6} \).
Solving for the roots, we get:
[tex]\[ z = \frac{\frac{1}{6} \pm \sqrt{\left(\frac{1}{6}\right)^2 + 4 \cdot \frac{1}{6}}}{2} \][/tex]
Simplifying the expression inside the square root and solving for \( z \):
[tex]\[ z = \frac{\frac{1}{6} \pm \sqrt{\frac{1}{36} + \frac{2}{3}}}{2} \][/tex]
[tex]\[ z = \frac{\frac{1}{6} \pm \sqrt{\frac{1}{36} + \frac{12}{36}}}{2} \][/tex]
[tex]\[ z = \frac{\frac{1}{6} \pm \sqrt{\frac{13}{36}}}{2} \][/tex]
[tex]\[ z = \frac{\frac{1}{6} \pm \frac{\sqrt{13}}{6}}{2} \][/tex]
[tex]\[ z = \frac{1 \pm \sqrt{13}}{12} \][/tex]
Thus, the roots of the denominator are:
[tex]\[ z_1 = \frac{1 + \sqrt{13}}{12} \approx 0.5 \][/tex]
[tex]\[ z_2 = \frac{1 - \sqrt{13}}{12} \approx -0.333 \][/tex]
And we have one more root at \( z = 1 \) from the linear factor.
So, we can write the denominator as:
[tex]\[ (z-1)(z-0.5)(z+0.333) \][/tex]
### Step 3: Construct the Transfer Function in Factored Form
Using the roots, the transfer function can be written as:
[tex]\[ H(z) = \frac{2z^2 (z - \frac{1}{3})}{(z - 1)(z - 0.5)(z + 0.333)} \][/tex]
### Step 4: Cascaded Realization
The factored form of \( H(z) \) can be realized as a series of second-order sections.
1. The first stage is:
[tex]\[ H_1(z) = \frac{z - 0}{z - 1} = \frac{z}{z - 1} \][/tex]
2. The second stage is:
[tex]\[ H_2(z) = \frac{z - 0}{z - 0.5} = \frac{z}{z - 0.5} \][/tex]
3. The third stage is:
[tex]\[ H_3(z) = \frac{2(z - \frac{1}{3})}{z + 0.333} = \frac{2(z - \frac{1}{3})}{z + 0.333} \][/tex]
So the cascaded realization of \( H(z) \) is:
[tex]\[ H(z) = H_1(z) \cdot H_2(z) \cdot H_3(z) \][/tex]
where
[tex]\[ H_1(z) = \frac{z}{z - 1} \][/tex]
[tex]\[ H_2(z) = \frac{z}{z - 0.5} \][/tex]
[tex]\[ H_3(z) = \frac{2(z - \frac{1}{3})}{z + 0.333} \][/tex]
Each of these stages can be implemented using digital filters in a cascade system.
[tex]\[ H(z) = \frac{z^2 (6z - 2)}{(z-1) \left(z^2 - \frac{1}{6}z - \frac{1}{6}\right)} \][/tex]
we will factorize both the numerator and the denominator into their respective roots and then express \( H(z) \) in terms of its zeros and poles.
### Step 1: Factorize the Numerator
The numerator of the transfer function is given by:
[tex]\[ z^2 (6z - 2) \][/tex]
We can express this in factored form as:
[tex]\[ z^2 (6z - 2) = z^2 \cdot 2(3z - 1) = 2z^2(3z - 1) \][/tex]
The numerator has roots at \( z = 0 \) and \( z = \frac{1}{3} \). Thus, the numerator can be written as:
[tex]\[ 2z^2 (z - \frac{1}{3}) \][/tex]
### Step 2: Factorize the Denominator
The denominator of the transfer function is given by:
[tex]\[ (z-1) \left(z^2 - \frac{1}{6}z - \frac{1}{6}\right) \][/tex]
We need to solve the quadratic equation:
[tex]\[ z^2 - \frac{1}{6}z - \frac{1}{6} = 0 \][/tex]
The roots of this quadratic equation are obtained using the quadratic formula:
[tex]\[ z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where \( a = 1 \), \( b = -\frac{1}{6} \), and \( c = -\frac{1}{6} \).
Solving for the roots, we get:
[tex]\[ z = \frac{\frac{1}{6} \pm \sqrt{\left(\frac{1}{6}\right)^2 + 4 \cdot \frac{1}{6}}}{2} \][/tex]
Simplifying the expression inside the square root and solving for \( z \):
[tex]\[ z = \frac{\frac{1}{6} \pm \sqrt{\frac{1}{36} + \frac{2}{3}}}{2} \][/tex]
[tex]\[ z = \frac{\frac{1}{6} \pm \sqrt{\frac{1}{36} + \frac{12}{36}}}{2} \][/tex]
[tex]\[ z = \frac{\frac{1}{6} \pm \sqrt{\frac{13}{36}}}{2} \][/tex]
[tex]\[ z = \frac{\frac{1}{6} \pm \frac{\sqrt{13}}{6}}{2} \][/tex]
[tex]\[ z = \frac{1 \pm \sqrt{13}}{12} \][/tex]
Thus, the roots of the denominator are:
[tex]\[ z_1 = \frac{1 + \sqrt{13}}{12} \approx 0.5 \][/tex]
[tex]\[ z_2 = \frac{1 - \sqrt{13}}{12} \approx -0.333 \][/tex]
And we have one more root at \( z = 1 \) from the linear factor.
So, we can write the denominator as:
[tex]\[ (z-1)(z-0.5)(z+0.333) \][/tex]
### Step 3: Construct the Transfer Function in Factored Form
Using the roots, the transfer function can be written as:
[tex]\[ H(z) = \frac{2z^2 (z - \frac{1}{3})}{(z - 1)(z - 0.5)(z + 0.333)} \][/tex]
### Step 4: Cascaded Realization
The factored form of \( H(z) \) can be realized as a series of second-order sections.
1. The first stage is:
[tex]\[ H_1(z) = \frac{z - 0}{z - 1} = \frac{z}{z - 1} \][/tex]
2. The second stage is:
[tex]\[ H_2(z) = \frac{z - 0}{z - 0.5} = \frac{z}{z - 0.5} \][/tex]
3. The third stage is:
[tex]\[ H_3(z) = \frac{2(z - \frac{1}{3})}{z + 0.333} = \frac{2(z - \frac{1}{3})}{z + 0.333} \][/tex]
So the cascaded realization of \( H(z) \) is:
[tex]\[ H(z) = H_1(z) \cdot H_2(z) \cdot H_3(z) \][/tex]
where
[tex]\[ H_1(z) = \frac{z}{z - 1} \][/tex]
[tex]\[ H_2(z) = \frac{z}{z - 0.5} \][/tex]
[tex]\[ H_3(z) = \frac{2(z - \frac{1}{3})}{z + 0.333} \][/tex]
Each of these stages can be implemented using digital filters in a cascade system.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.