Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine if the value of \(2x + 1\) is twenty greater than \(8x + 5\), we need to set up the equation reflecting this condition and solve for \(x\). Let's go through the step-by-step solution:
1. Set up the equation:
According to the problem, we need \(2x + 1\) to be twenty greater than \(8x + 5\). Let's write that as an equation:
[tex]\[ 2x + 1 = 8x + 5 + 20 \][/tex]
2. Simplify the equation:
Combine like terms on the right side:
[tex]\[ 2x + 1 = 8x + 25 \][/tex]
3. Isolate the \(x\) terms:
Move the \(x\) terms to one side by subtracting \(8x\) from both sides:
[tex]\[ 2x - 8x + 1 = 25 \][/tex]
Simplify:
[tex]\[ -6x + 1 = 25 \][/tex]
4. Isolate the constant term:
Subtract 1 from both sides to move the constant to the right side:
[tex]\[ -6x = 25 - 1 \][/tex]
Simplify:
[tex]\[ -6x = 24 \][/tex]
5. Solve for \(x\):
Divide both sides by \(-6\):
[tex]\[ x = \frac{24}{-6} \][/tex]
Simplify:
[tex]\[ x = -4 \][/tex]
Hence, the solution to the problem is [tex]\(x = -4\)[/tex]. Therefore, when [tex]\(x = -4\)[/tex], the value of [tex]\(2x + 1\)[/tex] is indeed twenty greater than the value of [tex]\(8x + 5\)[/tex].
1. Set up the equation:
According to the problem, we need \(2x + 1\) to be twenty greater than \(8x + 5\). Let's write that as an equation:
[tex]\[ 2x + 1 = 8x + 5 + 20 \][/tex]
2. Simplify the equation:
Combine like terms on the right side:
[tex]\[ 2x + 1 = 8x + 25 \][/tex]
3. Isolate the \(x\) terms:
Move the \(x\) terms to one side by subtracting \(8x\) from both sides:
[tex]\[ 2x - 8x + 1 = 25 \][/tex]
Simplify:
[tex]\[ -6x + 1 = 25 \][/tex]
4. Isolate the constant term:
Subtract 1 from both sides to move the constant to the right side:
[tex]\[ -6x = 25 - 1 \][/tex]
Simplify:
[tex]\[ -6x = 24 \][/tex]
5. Solve for \(x\):
Divide both sides by \(-6\):
[tex]\[ x = \frac{24}{-6} \][/tex]
Simplify:
[tex]\[ x = -4 \][/tex]
Hence, the solution to the problem is [tex]\(x = -4\)[/tex]. Therefore, when [tex]\(x = -4\)[/tex], the value of [tex]\(2x + 1\)[/tex] is indeed twenty greater than the value of [tex]\(8x + 5\)[/tex].
Answer:
x = -4
Step-by-step explanation:
To determine if 2x + 1 is twenty greater than 8x + 5, we can set up the equation:
2x + 1 = 8x + 5 + 20
Simplify the right side of the equation:
2x + 1 = 8x + 25
Now, solve for x:
Subtract 2x from both sides:
1 = 6x + 25
Subtract 25 from both sides:
1 - 25 = 6x
-24 = 6x
Divide by 6:
x = -4
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.