Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's analyze the given function and the transformation step-by-step.
We are given the function \( f \) represented in a table of values:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & 13 & 19 & 37 & 91 & 253 \\ \hline \end{array} \][/tex]
First, we need to determine the effect of translating the function \( f \) down by 4 units. Translating a function \( f \) vertically down by 4 units means subtracting 4 from each \( f(x) \) value.
Let's find the translated values:
- \( f(1) = 13 \) will become \( 13 - 4 = 9 \)
- \( f(2) = 19 \) will become \( 19 - 4 = 15 \)
- \( f(3) = 37 \) will become \( 37 - 4 = 33 \)
- \( f(4) = 91 \) will become \( 91 - 4 = 87 \)
- \( f(5) = 253 \) will become \( 253 - 4 = 249 \)
Therefore, the points for the transformed function would be:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) - 4 & 9 & 15 & 33 & 87 & 249 \\ \hline \end{array} \][/tex]
Now, we need to select an example point from the transformed function's table and insert it into the appropriate position.
Given the transformed values, we can select any point. Let's use \( x = 2 \) as an example.
For \( x = 2 \), the value in the transformed function \( f(x) - 4 \) is \( 15 \). Hence, the point is \( (2, 15) \).
Therefore, the correct completion of the statements would be:
1. The parent function of the function represented in the table is \( f(x) \).
2. If function \( f \) was translated down 4 units, the \( y \)-values would be decreased by 4 units each.
3. A point in the table for the transformed function would be [tex]\( (2, 15) \)[/tex].
We are given the function \( f \) represented in a table of values:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & 13 & 19 & 37 & 91 & 253 \\ \hline \end{array} \][/tex]
First, we need to determine the effect of translating the function \( f \) down by 4 units. Translating a function \( f \) vertically down by 4 units means subtracting 4 from each \( f(x) \) value.
Let's find the translated values:
- \( f(1) = 13 \) will become \( 13 - 4 = 9 \)
- \( f(2) = 19 \) will become \( 19 - 4 = 15 \)
- \( f(3) = 37 \) will become \( 37 - 4 = 33 \)
- \( f(4) = 91 \) will become \( 91 - 4 = 87 \)
- \( f(5) = 253 \) will become \( 253 - 4 = 249 \)
Therefore, the points for the transformed function would be:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) - 4 & 9 & 15 & 33 & 87 & 249 \\ \hline \end{array} \][/tex]
Now, we need to select an example point from the transformed function's table and insert it into the appropriate position.
Given the transformed values, we can select any point. Let's use \( x = 2 \) as an example.
For \( x = 2 \), the value in the transformed function \( f(x) - 4 \) is \( 15 \). Hence, the point is \( (2, 15) \).
Therefore, the correct completion of the statements would be:
1. The parent function of the function represented in the table is \( f(x) \).
2. If function \( f \) was translated down 4 units, the \( y \)-values would be decreased by 4 units each.
3. A point in the table for the transformed function would be [tex]\( (2, 15) \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.