Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, let's analyze the information given and the properties of the trigonometric functions involved.
Given:
[tex]\[ \tan(\theta) = -1 \][/tex]
And we need to find:
[tex]\[ \sec(\theta) \][/tex]
for:
[tex]\[ \frac{3\pi}{2} < \theta < 2\pi \][/tex]
1. Determine the quadrant:
The interval \(\frac{3\pi}{2} < \theta < 2\pi\) places \(\theta\) in the fourth quadrant. In the fourth quadrant, the tangent of an angle is negative, which is consistent with \(\tan(\theta) = -1\).
2. Analyze the trigonometric relationships:
We know that:
[tex]\[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \][/tex]
Given that \(\tan(\theta) = -1\), this implies:
[tex]\[ \frac{\sin(\theta)}{\cos(\theta)} = -1 \implies \sin(\theta) = -\cos(\theta) \][/tex]
3. Determine \(\sin(\theta)\) and \(\cos(\theta)\):
Using the Pythagorean identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Let \(\cos(\theta) = x\). Then:
[tex]\[ \sin(\theta) = -x \][/tex]
Substitute these into the Pythagorean identity:
[tex]\[ (-x)^2 + x^2 = 1 \implies x^2 + x^2 = 1 \implies 2x^2 = 1 \implies x^2 = \frac{1}{2} \implies x = \pm\frac{1}{\sqrt{2}} \][/tex]
4. Determine the sign of \(\cos(\theta)\):
In the fourth quadrant, \(\cos(\theta)\) is positive. Therefore, we take the positive value:
[tex]\[ \cos(\theta) = \frac{1}{\sqrt{2}} \][/tex]
5. Compute \(\sec(\theta)\):
Recall that \(\sec(\theta)\) is the reciprocal of \(\cos(\theta)\):
[tex]\[ \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \][/tex]
Thus, the value of \(\sec(\theta)\) is:
[tex]\[ \sqrt{2} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\sqrt{2}} \][/tex]
Given:
[tex]\[ \tan(\theta) = -1 \][/tex]
And we need to find:
[tex]\[ \sec(\theta) \][/tex]
for:
[tex]\[ \frac{3\pi}{2} < \theta < 2\pi \][/tex]
1. Determine the quadrant:
The interval \(\frac{3\pi}{2} < \theta < 2\pi\) places \(\theta\) in the fourth quadrant. In the fourth quadrant, the tangent of an angle is negative, which is consistent with \(\tan(\theta) = -1\).
2. Analyze the trigonometric relationships:
We know that:
[tex]\[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \][/tex]
Given that \(\tan(\theta) = -1\), this implies:
[tex]\[ \frac{\sin(\theta)}{\cos(\theta)} = -1 \implies \sin(\theta) = -\cos(\theta) \][/tex]
3. Determine \(\sin(\theta)\) and \(\cos(\theta)\):
Using the Pythagorean identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Let \(\cos(\theta) = x\). Then:
[tex]\[ \sin(\theta) = -x \][/tex]
Substitute these into the Pythagorean identity:
[tex]\[ (-x)^2 + x^2 = 1 \implies x^2 + x^2 = 1 \implies 2x^2 = 1 \implies x^2 = \frac{1}{2} \implies x = \pm\frac{1}{\sqrt{2}} \][/tex]
4. Determine the sign of \(\cos(\theta)\):
In the fourth quadrant, \(\cos(\theta)\) is positive. Therefore, we take the positive value:
[tex]\[ \cos(\theta) = \frac{1}{\sqrt{2}} \][/tex]
5. Compute \(\sec(\theta)\):
Recall that \(\sec(\theta)\) is the reciprocal of \(\cos(\theta)\):
[tex]\[ \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \][/tex]
Thus, the value of \(\sec(\theta)\) is:
[tex]\[ \sqrt{2} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\sqrt{2}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.