At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the coefficient of the \(x^7 y^3\) term in the expansion of \((x-2y)^{10}\), we can use the binomial theorem. The binomial theorem states that:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this problem, we have \(a = x\), \(b = -2y\), and \(n = 10\). We are interested in the term where the power of \(y\) is 3, which corresponds to \(k = 3\).
The general term in the expansion is given by:
[tex]\[ \binom{n}{k} x^{n-k} (-2y)^k \][/tex]
Substituting \(n = 10\), \(k = 3\), and \(n-k = 7\), we have:
[tex]\[ \binom{10}{3} x^{7} (-2y)^3 \][/tex]
Now we need to calculate each component of this term:
1. Calculate the binomial coefficient \(\binom{10}{3}\):
[tex]\[ \binom{10}{3} = \frac{10!}{3! (10-3)!} = \frac{10!}{3! 7!} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 120 \][/tex]
2. Determine the powers of \(x\) and \(y\):
Since we are dealing with \(k = 3\),
- The power of \(x\) is \(10 - 3 = 7\).
- The power of \(y\) is \(3\).
3. Calculate the coefficient for \((-2y)^3\):
[tex]\[ (-2y)^3 = (-2)^3 y^3 = -8 y^3 \][/tex]
4. Multiply the binomial coefficient by the coefficient of \((-2y)^3\):
[tex]\[ 120 \times (-8) = -960 \][/tex]
Thus, the coefficient of the \(x^7 y^3\) term in the expansion of \((x-2y)^{10}\) is \(-960\).
So, the correct answer is:
[tex]\[ \boxed{-960} \][/tex]
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this problem, we have \(a = x\), \(b = -2y\), and \(n = 10\). We are interested in the term where the power of \(y\) is 3, which corresponds to \(k = 3\).
The general term in the expansion is given by:
[tex]\[ \binom{n}{k} x^{n-k} (-2y)^k \][/tex]
Substituting \(n = 10\), \(k = 3\), and \(n-k = 7\), we have:
[tex]\[ \binom{10}{3} x^{7} (-2y)^3 \][/tex]
Now we need to calculate each component of this term:
1. Calculate the binomial coefficient \(\binom{10}{3}\):
[tex]\[ \binom{10}{3} = \frac{10!}{3! (10-3)!} = \frac{10!}{3! 7!} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 120 \][/tex]
2. Determine the powers of \(x\) and \(y\):
Since we are dealing with \(k = 3\),
- The power of \(x\) is \(10 - 3 = 7\).
- The power of \(y\) is \(3\).
3. Calculate the coefficient for \((-2y)^3\):
[tex]\[ (-2y)^3 = (-2)^3 y^3 = -8 y^3 \][/tex]
4. Multiply the binomial coefficient by the coefficient of \((-2y)^3\):
[tex]\[ 120 \times (-8) = -960 \][/tex]
Thus, the coefficient of the \(x^7 y^3\) term in the expansion of \((x-2y)^{10}\) is \(-960\).
So, the correct answer is:
[tex]\[ \boxed{-960} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.