At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

What is the pre-image of vertex [tex]A'[/tex] if the rule that created the image is [tex]r_{y \text{-axis}}(x, y) \rightarrow (-x, y)[/tex]?

A. [tex]A(-4, 2)[/tex]
B. [tex]A(-2, -4)[/tex]
C. [tex]A(2, 4)[/tex]
D. [tex]A(4, -2)[/tex]


Sagot :

To determine the pre-image of a vertex \( A' \) given the rule \( r_{y \text{-axis}} (x, y) \rightarrow (-x, y) \), we need to understand that this rule reflects points over the y-axis. This reflection changes the sign of the x-coordinate while leaving the y-coordinate unchanged.

Now, let's determine the pre-image of each of the possible given points:

1. Given point \( A(-4, 2) \):
- If this is a reflection of a point over the y-axis, then we start with the point before reflection, which would be \((x, y) = (4, 2)\).

2. Given point \( A(-2, -4) \):
- Applying the reflection rule in reverse, we change the sign of the x-coordinate, so the pre-image would be \((x, y) = (2, -4)\).

3. Given point \( A(2, 4) \):
- Applying the reflection rule in reverse, we change the sign of the x-coordinate, so the pre-image would be \((x, y) = (-2, 4)\).

4. Given point \( A(4, -2) \):
- Applying the reflection rule in reverse, we change the sign of the x-coordinate, so the pre-image would be \((x, y) = (-4, -2)\).

Thus, the pre-images for the given points are:
- For \( A(-4, 2) \), the pre-image is \( (4, 2) \).
- For \( A(-2, -4) \), the pre-image is \( (2, -4) \).
- For \( A(2, 4) \), the pre-image is \( (-2, 4) \).
- For \( A(4, -2) \), the pre-image is \( (-4, -2) \).

So the pre-images are:
[tex]\[ \begin{aligned} & (4, 2), \\ & (2, -4), \\ & (-2, 4), \\ & (-4, -2). \end{aligned} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.