Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which of the provided ratios could represent the ratio of the length of the longer leg to the length of the hypotenuse in a 30-60-90 triangle, we need to understand the properties of a 30-60-90 triangle.
In a 30-60-90 triangle:
- The sides are in the ratio \(1 : \sqrt{3} : 2\),
where:
- \(1\) is the length of the shorter leg,
- \(\sqrt{3}\) is the length of the longer leg,
- \(2\) is the length of the hypotenuse.
Thus, the ratio of the longer leg to the hypotenuse is \(\frac{\sqrt{3}}{2}\).
Now, let's check each of the given options to determine if they are equivalent to \(\frac{\sqrt{3}}{2}\).
A. \(1 : \sqrt{3}\)
[tex]\[ \frac{1}{\sqrt{3}} \neq \frac{\sqrt{3}}{2} \][/tex]
Hence, this is incorrect.
B. \(\sqrt{3} : 2\)
[tex]\[ \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \][/tex]
This is already in the desired form.
C. \(2 : 2\sqrt{2}\)
[tex]\[ \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
This is not equivalent to \(\frac{\sqrt{3}}{2}\).
D. \(\sqrt{3} : \sqrt{3}\)
[tex]\[ \frac{\sqrt{3}}{\sqrt{3}} = 1 \][/tex]
This is not equivalent to \(\frac{\sqrt{3}}{2}\).
E. \(2\sqrt{3} : 4\)
[tex]\[ \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \][/tex]
This is equivalent to \(\frac{\sqrt{3}}{2}\).
F. \(\sqrt{2} : \sqrt{3}\)
[tex]\[ \frac{\sqrt{2}}{\sqrt{3}} \neq \frac{\sqrt{3}}{2} \][/tex]
This is not equivalent.
Thus, the ratios that represent the ratio of the length of the longer leg to the length of the hypotenuse in a 30-60-90 triangle are:
[tex]\[ \boxed{B, E} \][/tex]
In a 30-60-90 triangle:
- The sides are in the ratio \(1 : \sqrt{3} : 2\),
where:
- \(1\) is the length of the shorter leg,
- \(\sqrt{3}\) is the length of the longer leg,
- \(2\) is the length of the hypotenuse.
Thus, the ratio of the longer leg to the hypotenuse is \(\frac{\sqrt{3}}{2}\).
Now, let's check each of the given options to determine if they are equivalent to \(\frac{\sqrt{3}}{2}\).
A. \(1 : \sqrt{3}\)
[tex]\[ \frac{1}{\sqrt{3}} \neq \frac{\sqrt{3}}{2} \][/tex]
Hence, this is incorrect.
B. \(\sqrt{3} : 2\)
[tex]\[ \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \][/tex]
This is already in the desired form.
C. \(2 : 2\sqrt{2}\)
[tex]\[ \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
This is not equivalent to \(\frac{\sqrt{3}}{2}\).
D. \(\sqrt{3} : \sqrt{3}\)
[tex]\[ \frac{\sqrt{3}}{\sqrt{3}} = 1 \][/tex]
This is not equivalent to \(\frac{\sqrt{3}}{2}\).
E. \(2\sqrt{3} : 4\)
[tex]\[ \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \][/tex]
This is equivalent to \(\frac{\sqrt{3}}{2}\).
F. \(\sqrt{2} : \sqrt{3}\)
[tex]\[ \frac{\sqrt{2}}{\sqrt{3}} \neq \frac{\sqrt{3}}{2} \][/tex]
This is not equivalent.
Thus, the ratios that represent the ratio of the length of the longer leg to the length of the hypotenuse in a 30-60-90 triangle are:
[tex]\[ \boxed{B, E} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.