Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's go through this step by step:
### Equation Given:
[tex]\[ y = x^3 - x^2 - 24x - 36 \][/tex]
A. Finding the Roots of the Equation \( y = 0 \):
1. To determine the values of \( x \) where \( y \) equals zero (\( y = 0 \)), solve the equation:
[tex]\[ x^3 - x^2 - 24x - 36 = 0 \][/tex]
The solutions (roots) are:
[tex]\[ x = -3, \, x = -2, \, x = 6 \][/tex]
So, the roots of the equation are:
[tex]\[ x = -3, -2, 6 \][/tex]
B. Determining the Critical Points:
2. First, find the first derivative \( y' \) of the given function \( y = x^3 - x^2 - 24x - 36 \):
[tex]\[ y' = \frac{d}{dx}(x^3 - x^2 - 24x - 36) \][/tex]
The derivative is:
[tex]\[ y' = 3x^2 - 2x - 24 \][/tex]
3. To obtain the critical points, set the first derivative equal to zero and solve for \( x \):
[tex]\[ 3x^2 - 2x - 24 = 0 \][/tex]
Solving this quadratic equation gives:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]
The critical points are:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]
C. Classifying the Critical Points Using the Second Derivative:
4. Find the second derivative \( y'' \) of the given function:
[tex]\[ y'' = \frac{d}{dx}(3x^2 - 2x - 24) \][/tex]
The second derivative is:
[tex]\[ y'' = 6x - 2 \][/tex]
5. Evaluate the second derivative at each of the critical points to determine whether each is a local maximum, local minimum, or an inflection point.
For \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) - 2 = -2\sqrt{73} \][/tex]
For \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) - 2 = 2\sqrt{73} \][/tex]
Since:
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = -2\sqrt{73} \quad (\text{Negative, indicating a local maximum}) \][/tex]
[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 2\sqrt{73} \quad (Positive, indicating a local minimum) \][/tex]
Summary:
- The roots of the equation \( y = x^3 - x^2 - 24x - 36 \) are \( x = -3, -2, 6 \).
- The critical points of the function are at \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \) and \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \).
- At \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \), there is a local maximum since the second derivative is negative.
- At [tex]\( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \)[/tex], there is a local minimum since the second derivative is positive.
### Equation Given:
[tex]\[ y = x^3 - x^2 - 24x - 36 \][/tex]
A. Finding the Roots of the Equation \( y = 0 \):
1. To determine the values of \( x \) where \( y \) equals zero (\( y = 0 \)), solve the equation:
[tex]\[ x^3 - x^2 - 24x - 36 = 0 \][/tex]
The solutions (roots) are:
[tex]\[ x = -3, \, x = -2, \, x = 6 \][/tex]
So, the roots of the equation are:
[tex]\[ x = -3, -2, 6 \][/tex]
B. Determining the Critical Points:
2. First, find the first derivative \( y' \) of the given function \( y = x^3 - x^2 - 24x - 36 \):
[tex]\[ y' = \frac{d}{dx}(x^3 - x^2 - 24x - 36) \][/tex]
The derivative is:
[tex]\[ y' = 3x^2 - 2x - 24 \][/tex]
3. To obtain the critical points, set the first derivative equal to zero and solve for \( x \):
[tex]\[ 3x^2 - 2x - 24 = 0 \][/tex]
Solving this quadratic equation gives:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]
The critical points are:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]
C. Classifying the Critical Points Using the Second Derivative:
4. Find the second derivative \( y'' \) of the given function:
[tex]\[ y'' = \frac{d}{dx}(3x^2 - 2x - 24) \][/tex]
The second derivative is:
[tex]\[ y'' = 6x - 2 \][/tex]
5. Evaluate the second derivative at each of the critical points to determine whether each is a local maximum, local minimum, or an inflection point.
For \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) - 2 = -2\sqrt{73} \][/tex]
For \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) - 2 = 2\sqrt{73} \][/tex]
Since:
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = -2\sqrt{73} \quad (\text{Negative, indicating a local maximum}) \][/tex]
[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 2\sqrt{73} \quad (Positive, indicating a local minimum) \][/tex]
Summary:
- The roots of the equation \( y = x^3 - x^2 - 24x - 36 \) are \( x = -3, -2, 6 \).
- The critical points of the function are at \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \) and \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \).
- At \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \), there is a local maximum since the second derivative is negative.
- At [tex]\( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \)[/tex], there is a local minimum since the second derivative is positive.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.