At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's complete the function table for the given domain, evaluating the function \( f(x) = (x-5)^2 + 1 \) at each provided value of \( x \).
We have:
[tex]\[ \begin{aligned} &f(2) = (2 - 5)^2 + 1 = (-3)^2 + 1 = 9 + 1 = 10, \\ &f(3) = (3 - 5)^2 + 1 = (-2)^2 + 1 = 4 + 1 = 5, \\ &f(4) = (4 - 5)^2 + 1 = (-1)^2 + 1 = 1 + 1 = 2, \\ &f(5) = (5 - 5)^2 + 1 = 0^2 + 1 = 0 + 1 = 1, \\ &f(6) = (6 - 5)^2 + 1 = 1^2 + 1 = 1 + 1 = 2. \end{aligned} \][/tex]
Let's fill in the table with these values:
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline [tex]$x$[/tex] & 2 & 3 & 4 & 5 & 6 \\
\hline
[tex]$f(x)$[/tex] & 10 & 5 & 2 & 1 & 2 \\
\hline
\end{tabular}
\][/tex]
Next, to plot these points on a graph, we will mark each \( (x, f(x)) \) pair:
- (2, 10)
- (3, 5)
- (4, 2)
- (5, 1)
- (6, 2)
Here's how you can visualize the points on the graph:
1. (2, 10): Locate \( x = 2 \) on the horizontal axis and \( y = 10 \) on the vertical axis.
2. (3, 5): Locate \( x = 3 \) on the horizontal axis and \( y = 5 \) on the vertical axis.
3. (4, 2): Locate \( x = 4 \) on the horizontal axis and \( y = 2 \) on the vertical axis.
4. (5, 1): Locate \( x = 5 \) on the horizontal axis and \( y = 1 \) on the vertical axis.
5. (6, 2): Locate \( x = 6 \) on the horizontal axis and \( y = 2 \) on the vertical axis.
Connect these points to see the shape of the function [tex]\( f(x) \)[/tex].
We have:
[tex]\[ \begin{aligned} &f(2) = (2 - 5)^2 + 1 = (-3)^2 + 1 = 9 + 1 = 10, \\ &f(3) = (3 - 5)^2 + 1 = (-2)^2 + 1 = 4 + 1 = 5, \\ &f(4) = (4 - 5)^2 + 1 = (-1)^2 + 1 = 1 + 1 = 2, \\ &f(5) = (5 - 5)^2 + 1 = 0^2 + 1 = 0 + 1 = 1, \\ &f(6) = (6 - 5)^2 + 1 = 1^2 + 1 = 1 + 1 = 2. \end{aligned} \][/tex]
Let's fill in the table with these values:
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline [tex]$x$[/tex] & 2 & 3 & 4 & 5 & 6 \\
\hline
[tex]$f(x)$[/tex] & 10 & 5 & 2 & 1 & 2 \\
\hline
\end{tabular}
\][/tex]
Next, to plot these points on a graph, we will mark each \( (x, f(x)) \) pair:
- (2, 10)
- (3, 5)
- (4, 2)
- (5, 1)
- (6, 2)
Here's how you can visualize the points on the graph:
1. (2, 10): Locate \( x = 2 \) on the horizontal axis and \( y = 10 \) on the vertical axis.
2. (3, 5): Locate \( x = 3 \) on the horizontal axis and \( y = 5 \) on the vertical axis.
3. (4, 2): Locate \( x = 4 \) on the horizontal axis and \( y = 2 \) on the vertical axis.
4. (5, 1): Locate \( x = 5 \) on the horizontal axis and \( y = 1 \) on the vertical axis.
5. (6, 2): Locate \( x = 6 \) on the horizontal axis and \( y = 2 \) on the vertical axis.
Connect these points to see the shape of the function [tex]\( f(x) \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.