Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to determine the minimum value of \( n \) such that the perimeter of the triangle is at least 37 units.
Given the side lengths of the triangle:
- First side: \( n \)
- Second side: \( n - 3 \)
- Third side: \( 2(n - 2) \)
The perimeter \( P \) of the triangle is the sum of the lengths of its sides. Therefore, we can express the perimeter as:
[tex]\[ P = n + (n - 3) + 2(n - 2) \][/tex]
Simplify the expression:
[tex]\[ P = n + n - 3 + 2n - 4 \][/tex]
Combine like terms:
[tex]\[ P = 4n - 7 \][/tex]
We want the perimeter to be at least 37 units, so we set up the inequality:
[tex]\[ 4n - 7 \geq 37 \][/tex]
To solve for \( n \), first isolate \( n \) on one side of the inequality:
[tex]\[ 4n - 7 \geq 37 \][/tex]
Add 7 to both sides:
[tex]\[ 4n \geq 44 \][/tex]
Divide both sides by 4:
[tex]\[ n \geq 11 \][/tex]
Therefore, the minimum value of \( n \) that satisfies this condition is \( 11 \). Thus, the correct answer is:
B. [tex]\( n \geq 11 \)[/tex]
Given the side lengths of the triangle:
- First side: \( n \)
- Second side: \( n - 3 \)
- Third side: \( 2(n - 2) \)
The perimeter \( P \) of the triangle is the sum of the lengths of its sides. Therefore, we can express the perimeter as:
[tex]\[ P = n + (n - 3) + 2(n - 2) \][/tex]
Simplify the expression:
[tex]\[ P = n + n - 3 + 2n - 4 \][/tex]
Combine like terms:
[tex]\[ P = 4n - 7 \][/tex]
We want the perimeter to be at least 37 units, so we set up the inequality:
[tex]\[ 4n - 7 \geq 37 \][/tex]
To solve for \( n \), first isolate \( n \) on one side of the inequality:
[tex]\[ 4n - 7 \geq 37 \][/tex]
Add 7 to both sides:
[tex]\[ 4n \geq 44 \][/tex]
Divide both sides by 4:
[tex]\[ n \geq 11 \][/tex]
Therefore, the minimum value of \( n \) that satisfies this condition is \( 11 \). Thus, the correct answer is:
B. [tex]\( n \geq 11 \)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.