At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which function among the given options has a vertical asymptote at \( x = -2 \), a horizontal asymptote at \( f(x) = -1 \), and a root at \( x = 2 \), we need to check each of the functions based on these criteria. Let's analyze each function step-by-step:
### Function A: \( f(x) = \frac{4}{x+2} - 1 \)
1. Vertical Asymptote: A vertical asymptote occurs where the denominator is zero. For \( f(x) = \frac{4}{x+2} - 1 \), the denominator is zero at \( x = -2 \). Therefore, it has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: Horizontal asymptotes for rational functions of the form \( \frac{a}{x+b} + c \) occur at \( y = c \) as \( x \) approaches infinity. Here, as \( x \rightarrow \infty \), \( f(x) \rightarrow -1 \).
3. Root: A root of the function occurs where \( f(x) = 0 \). Set the function equal to zero:
[tex]\[ \frac{4}{x+2} - 1 = 0 \implies \frac{4}{x+2} = 1 \implies 4 = x + 2 \implies x = 2 \][/tex]
Therefore, \( x = 2 \) is a root.
Since function A meets all criteria, it is a candidate. Let's verify the other functions to ensure there is only one correct answer.
### Function B: \( f(x) = \frac{4}{x-2} - 1 \)
1. Vertical Asymptote: The vertical asymptote occurs where the denominator is zero. Here, \( f(x) = \frac{4}{x-2} - 1 \) has a denominator of zero at \( x = 2 \), not \( x = -2 \). This function does not meet the first criterion.
### Function C: \( f(x) = \frac{-4}{x+2} + 1 \)
1. Vertical Asymptote: The denominator is zero at \( x = -2 \). This function has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: As \( x \rightarrow \infty \), the function approaches \( 1 \), not \(-1\). This function does not meet the second criterion.
### Function D: \( f(x) = \frac{-4}{x+2} - 1 \)
1. Vertical Asymptote: The vertical asymptote occurs where the denominator is zero, which is at \( x = -2 \). This function has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: As \( x \rightarrow \infty \), the function approaches \(-1\), which meets the second criterion.
3. Root: Set the function to zero:
[tex]\[ \frac{-4}{x+2} - 1 = 0 \implies \frac{-4}{x+2} = 1 \implies -4 = x + 2 \implies x = -6 \][/tex]
Therefore, \( x = -6 \) but we need a root at \( x = 2 \). This function does not meet the third criterion.
After evaluating all options, we find that:
- Function A: \( f(x) = \frac{4}{x+2} - 1 \) meets all criteria.
Hence, the correct answer is:
[tex]\[ \boxed{\text{A}} \][/tex]
### Function A: \( f(x) = \frac{4}{x+2} - 1 \)
1. Vertical Asymptote: A vertical asymptote occurs where the denominator is zero. For \( f(x) = \frac{4}{x+2} - 1 \), the denominator is zero at \( x = -2 \). Therefore, it has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: Horizontal asymptotes for rational functions of the form \( \frac{a}{x+b} + c \) occur at \( y = c \) as \( x \) approaches infinity. Here, as \( x \rightarrow \infty \), \( f(x) \rightarrow -1 \).
3. Root: A root of the function occurs where \( f(x) = 0 \). Set the function equal to zero:
[tex]\[ \frac{4}{x+2} - 1 = 0 \implies \frac{4}{x+2} = 1 \implies 4 = x + 2 \implies x = 2 \][/tex]
Therefore, \( x = 2 \) is a root.
Since function A meets all criteria, it is a candidate. Let's verify the other functions to ensure there is only one correct answer.
### Function B: \( f(x) = \frac{4}{x-2} - 1 \)
1. Vertical Asymptote: The vertical asymptote occurs where the denominator is zero. Here, \( f(x) = \frac{4}{x-2} - 1 \) has a denominator of zero at \( x = 2 \), not \( x = -2 \). This function does not meet the first criterion.
### Function C: \( f(x) = \frac{-4}{x+2} + 1 \)
1. Vertical Asymptote: The denominator is zero at \( x = -2 \). This function has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: As \( x \rightarrow \infty \), the function approaches \( 1 \), not \(-1\). This function does not meet the second criterion.
### Function D: \( f(x) = \frac{-4}{x+2} - 1 \)
1. Vertical Asymptote: The vertical asymptote occurs where the denominator is zero, which is at \( x = -2 \). This function has a vertical asymptote at \( x = -2 \).
2. Horizontal Asymptote: As \( x \rightarrow \infty \), the function approaches \(-1\), which meets the second criterion.
3. Root: Set the function to zero:
[tex]\[ \frac{-4}{x+2} - 1 = 0 \implies \frac{-4}{x+2} = 1 \implies -4 = x + 2 \implies x = -6 \][/tex]
Therefore, \( x = -6 \) but we need a root at \( x = 2 \). This function does not meet the third criterion.
After evaluating all options, we find that:
- Function A: \( f(x) = \frac{4}{x+2} - 1 \) meets all criteria.
Hence, the correct answer is:
[tex]\[ \boxed{\text{A}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.