Answered

Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

The equation [tex]$x^2 - 1x - 90 = 0$[/tex] has solutions [tex] \{a, b\} [/tex]. What is [tex] a + b [/tex]?

A. [tex] -19 [/tex]
B. [tex] -9 [/tex]
C. [tex] 1 [/tex]
D. [tex] 10 [/tex]


Sagot :

To find the sum of the roots of the quadratic equation \( x^2 - x - 90 = 0 \), we can use Vieta's formulas. Vieta's formulas relate the coefficients of the polynomial to sums and products of its roots.

For a quadratic equation of the form \( ax^2 + bx + c = 0 \), the sum of the roots \( a \) and \( b \) can be found using the formula:

[tex]\[ a + b = -\frac{b}{a} \][/tex]

In the given quadratic equation \( x^2 - x - 90 = 0 \):

- The coefficient \( a \) (the coefficient of \( x^2 \)) is 1.
- The coefficient \( b \) (the coefficient of \( x \)) is -1.
- The constant term \( c \) is -90.

So, according to Vieta's formulas, the sum of the roots is:

[tex]\[ a + b = -\frac{b}{a} = -\frac{-1}{1} = 1 \][/tex]

Thus, the sum of the roots \( a \) and \( b \) is:

[tex]\[ a + b = 1 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{1} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.