Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Amal's work is correct.
To elaborate, we can break down the polynomial division step-by-step as follows:
1. Step 1: Divide the leading term of the numerator by the leading term of the divisor:
[tex]\[ \frac{-2x^3}{x^2} = -2x \][/tex]
2. Step 2: Multiply the entire divisor by the quotient term and subtract from the original polynomial:
[tex]\[ (-2x^3 + 11x^2 - 23x + 20) - (-2x^3 + 6x^2 - 8x) \][/tex]
This simplifies to:
[tex]\[ (-2x^3 + 11x^2 - 23x + 20) + (2x^3 - 6x^2 + 8x) = 5x^2 - 15x + 20 \][/tex]
3. Step 3: Divide the new polynomial by the leading term of the divisor:
[tex]\[ \frac{5x^2}{x^2} = 5 \][/tex]
4. Step 4: Multiply the entire divisor by the second quotient term and subtract:
[tex]\[ (5x^2 - 15x + 20) - (5x^2 - 15x + 20) = 0 \][/tex]
Since the remainder is zero, the division is complete.
5. Combining the quotients, we get:
[tex]\[ -2x + 5 \][/tex]
Since both intermediate and final steps show the operations were performed correctly, we can conclude:
[tex]\[ \frac{-2 x^3+11 x^2-23 x+20}{x^2-3 x+4} = -2x + 5 \][/tex]
Therefore, Amal's work is indeed correct.
To elaborate, we can break down the polynomial division step-by-step as follows:
1. Step 1: Divide the leading term of the numerator by the leading term of the divisor:
[tex]\[ \frac{-2x^3}{x^2} = -2x \][/tex]
2. Step 2: Multiply the entire divisor by the quotient term and subtract from the original polynomial:
[tex]\[ (-2x^3 + 11x^2 - 23x + 20) - (-2x^3 + 6x^2 - 8x) \][/tex]
This simplifies to:
[tex]\[ (-2x^3 + 11x^2 - 23x + 20) + (2x^3 - 6x^2 + 8x) = 5x^2 - 15x + 20 \][/tex]
3. Step 3: Divide the new polynomial by the leading term of the divisor:
[tex]\[ \frac{5x^2}{x^2} = 5 \][/tex]
4. Step 4: Multiply the entire divisor by the second quotient term and subtract:
[tex]\[ (5x^2 - 15x + 20) - (5x^2 - 15x + 20) = 0 \][/tex]
Since the remainder is zero, the division is complete.
5. Combining the quotients, we get:
[tex]\[ -2x + 5 \][/tex]
Since both intermediate and final steps show the operations were performed correctly, we can conclude:
[tex]\[ \frac{-2 x^3+11 x^2-23 x+20}{x^2-3 x+4} = -2x + 5 \][/tex]
Therefore, Amal's work is indeed correct.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.