Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the solutions for the quadratic equation \( 4x^2 + 16x + 7 = 0 \), we will use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients of the quadratic equation are:
[tex]\[ a = 4,\quad b = 16,\quad c = 7 \][/tex]
### Step-by-Step Solution
1. Calculate the Discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of \(a\), \(b\), and \(c\):
[tex]\[ \Delta = 16^2 - 4 \cdot 4 \cdot 7 = 256 - 112 = 144 \][/tex]
2. Calculate the Two Possible Values of \(x\):
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
- Calculate \( x_1 \):
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-16 + \sqrt{144}}{2 \cdot 4} = \frac{-16 + 12}{8} = \frac{-4}{8} = -0.5 \][/tex]
- Calculate \( x_2 \):
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-16 - \sqrt{144}}{2 \cdot 4} = \frac{-16 - 12}{8} = \frac{-28}{8} = -3.5 \][/tex]
3. Round the Solutions:
The solutions are already in the form requiring rounding to 1 decimal place:
[tex]\[ x_1 = -0.5 \quad \text{and} \quad x_2 = -3.5 \][/tex]
### Final Answer
The two possible values of \( x \) for the quadratic equation \( 4x^2 + 16x + 7 = 0 \) rounded to 1 decimal place are:
[tex]\[ x_1 = -0.5 \quad \text{and} \quad x_2 = -3.5 \][/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients of the quadratic equation are:
[tex]\[ a = 4,\quad b = 16,\quad c = 7 \][/tex]
### Step-by-Step Solution
1. Calculate the Discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of \(a\), \(b\), and \(c\):
[tex]\[ \Delta = 16^2 - 4 \cdot 4 \cdot 7 = 256 - 112 = 144 \][/tex]
2. Calculate the Two Possible Values of \(x\):
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
- Calculate \( x_1 \):
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-16 + \sqrt{144}}{2 \cdot 4} = \frac{-16 + 12}{8} = \frac{-4}{8} = -0.5 \][/tex]
- Calculate \( x_2 \):
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-16 - \sqrt{144}}{2 \cdot 4} = \frac{-16 - 12}{8} = \frac{-28}{8} = -3.5 \][/tex]
3. Round the Solutions:
The solutions are already in the form requiring rounding to 1 decimal place:
[tex]\[ x_1 = -0.5 \quad \text{and} \quad x_2 = -3.5 \][/tex]
### Final Answer
The two possible values of \( x \) for the quadratic equation \( 4x^2 + 16x + 7 = 0 \) rounded to 1 decimal place are:
[tex]\[ x_1 = -0.5 \quad \text{and} \quad x_2 = -3.5 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.