Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the expression \(\sqrt[8]{a^5 b} - \sqrt[7]{a^5 b} \cdot \sqrt[8]{a^5 b}\), we can follow these steps:
1. Convert Radicals to Exponents: Start by expressing the radicals using fractional exponents.
- \(\sqrt[8]{a^5 b}\) can be written as \((a^5 b)^{\frac{1}{8}}\).
- \(\sqrt[7]{a^5 b}\) can be written as \((a^5 b)^{\frac{1}{7}}\).
2. Rewrite the Expression:
- The given expression can be rewritten as \((a^5 b)^{\frac{1}{8}} - (a^5 b)^{\frac{1}{7}} \cdot (a^5 b)^{\frac{1}{8}}\).
3. Simplify the Product of Exponents: Using the property of exponents that \(x^m \cdot x^n = x^{m+n}\):
- \(\sqrt[7]{a^5 b} \cdot \sqrt[8]{a^5 b}\) becomes \((a^5 b)^{\frac{1}{7}} \cdot (a^5 b)^{\frac{1}{8}} = (a^5 b)^{\frac{1}{7} + \frac{1}{8}}\).
4. Sum the Exponents:
- Compute \(\frac{1}{7} + \frac{1}{8}\).
- The value \(\frac{1}{7} + \frac{1}{8}\) can be calculated as:
[tex]\[ \frac{1}{7} + \frac{1}{8} = \frac{8 + 7}{56} = \frac{15}{56} \][/tex]
5. Rewrite the Expression:
- The expression thus simplifies to:
[tex]\[ (a^5 b)^{\frac{1}{8}} - (a^5 b)^{\frac{15}{56}} \][/tex]
6. Convert the Exponents Back to Original Form:
- \((a^5 b)^{\frac{1}{8}} \) remains as it is, and \((a^5 b)^{\frac{15}{56}} \) simplifies further by converting it back to:
[tex]\[ (a^5 b)^{\frac{15}{56}} = (a^5 b)^{0.267857142857143} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ (a^5 b)^{0.125} - (a^5 b)^{0.267857142857143} \][/tex]
This is the step-by-step solution to the problem.
1. Convert Radicals to Exponents: Start by expressing the radicals using fractional exponents.
- \(\sqrt[8]{a^5 b}\) can be written as \((a^5 b)^{\frac{1}{8}}\).
- \(\sqrt[7]{a^5 b}\) can be written as \((a^5 b)^{\frac{1}{7}}\).
2. Rewrite the Expression:
- The given expression can be rewritten as \((a^5 b)^{\frac{1}{8}} - (a^5 b)^{\frac{1}{7}} \cdot (a^5 b)^{\frac{1}{8}}\).
3. Simplify the Product of Exponents: Using the property of exponents that \(x^m \cdot x^n = x^{m+n}\):
- \(\sqrt[7]{a^5 b} \cdot \sqrt[8]{a^5 b}\) becomes \((a^5 b)^{\frac{1}{7}} \cdot (a^5 b)^{\frac{1}{8}} = (a^5 b)^{\frac{1}{7} + \frac{1}{8}}\).
4. Sum the Exponents:
- Compute \(\frac{1}{7} + \frac{1}{8}\).
- The value \(\frac{1}{7} + \frac{1}{8}\) can be calculated as:
[tex]\[ \frac{1}{7} + \frac{1}{8} = \frac{8 + 7}{56} = \frac{15}{56} \][/tex]
5. Rewrite the Expression:
- The expression thus simplifies to:
[tex]\[ (a^5 b)^{\frac{1}{8}} - (a^5 b)^{\frac{15}{56}} \][/tex]
6. Convert the Exponents Back to Original Form:
- \((a^5 b)^{\frac{1}{8}} \) remains as it is, and \((a^5 b)^{\frac{15}{56}} \) simplifies further by converting it back to:
[tex]\[ (a^5 b)^{\frac{15}{56}} = (a^5 b)^{0.267857142857143} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ (a^5 b)^{0.125} - (a^5 b)^{0.267857142857143} \][/tex]
This is the step-by-step solution to the problem.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.