Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's solve this problem step-by-step.
### Step 1: Understanding the Problem
We have the following parameters:
- The probability of success, \( p = 0.61 \), which means there is a 61% chance that a human resource manager says job applicants should follow up within two weeks.
- The number of trials, \( n = 20 \), which indicates that 20 human resource managers are randomly selected.
- We are interested in the case where exactly \( k = 14 \) managers say that applicants should follow up within two weeks.
### Step 2: Binomial Distribution
We use the binomial distribution to solve this problem. The binomial distribution formula for finding the probability of exactly \( k \) successes in \( n \) independent trials is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where:
- \( \binom{n}{k} = \frac{n!}{k!(n-k)!} \) is the binomial coefficient,
- \( p^k \) is the probability of having \( k \) successes,
- \( (1-p)^{n-k} \) is the probability of having \( n-k \) failures.
### Step 3: Plugging in the Values
Now let's plug in the values into the formula:
- \( n = 20 \)
- \( k = 14 \)
- \( p = 0.61 \)
- \( 1 - p = 0.39 \)
First, we calculate the binomial coefficient:
[tex]\[ \binom{20}{14} = \frac{20!}{14!(20-14)!} = \frac{20!}{14! \cdot 6!} \][/tex]
Next, we calculate \( p^k \) and \( (1 - p)^{n - k} \):
[tex]\[ p^{14} = 0.61^{14} \][/tex]
[tex]\[ (1 - p)^{6} = 0.39^{6} \][/tex]
### Step 4: Computing the Probability
Multiplying these components together gives us the probability \( P(X = 14) \).
After performing the calculations (simplified here for clarity), we find:
[tex]\[ P(X = 14) \approx 0.1347 \][/tex]
### Step 5: Conclusion
Thus, the probability that exactly 14 out of 20 randomly selected human resource managers say job applicants should follow up within two weeks is approximately \( 0.1347 \).
### Final Answer
The probability is [tex]\( \boxed{0.1347} \)[/tex].
### Step 1: Understanding the Problem
We have the following parameters:
- The probability of success, \( p = 0.61 \), which means there is a 61% chance that a human resource manager says job applicants should follow up within two weeks.
- The number of trials, \( n = 20 \), which indicates that 20 human resource managers are randomly selected.
- We are interested in the case where exactly \( k = 14 \) managers say that applicants should follow up within two weeks.
### Step 2: Binomial Distribution
We use the binomial distribution to solve this problem. The binomial distribution formula for finding the probability of exactly \( k \) successes in \( n \) independent trials is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where:
- \( \binom{n}{k} = \frac{n!}{k!(n-k)!} \) is the binomial coefficient,
- \( p^k \) is the probability of having \( k \) successes,
- \( (1-p)^{n-k} \) is the probability of having \( n-k \) failures.
### Step 3: Plugging in the Values
Now let's plug in the values into the formula:
- \( n = 20 \)
- \( k = 14 \)
- \( p = 0.61 \)
- \( 1 - p = 0.39 \)
First, we calculate the binomial coefficient:
[tex]\[ \binom{20}{14} = \frac{20!}{14!(20-14)!} = \frac{20!}{14! \cdot 6!} \][/tex]
Next, we calculate \( p^k \) and \( (1 - p)^{n - k} \):
[tex]\[ p^{14} = 0.61^{14} \][/tex]
[tex]\[ (1 - p)^{6} = 0.39^{6} \][/tex]
### Step 4: Computing the Probability
Multiplying these components together gives us the probability \( P(X = 14) \).
After performing the calculations (simplified here for clarity), we find:
[tex]\[ P(X = 14) \approx 0.1347 \][/tex]
### Step 5: Conclusion
Thus, the probability that exactly 14 out of 20 randomly selected human resource managers say job applicants should follow up within two weeks is approximately \( 0.1347 \).
### Final Answer
The probability is [tex]\( \boxed{0.1347} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.