Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's solve the problem of finding the set \( \{x : x \text{ is an integer and } x^2 < 40\} \).
We need to determine the integer values of \( x \) such that the square of \( x \) is less than 40.
1. Identify the range of \( x \) satisfying \( x^2 < 40 \):
- We want to find the integer values for which \( x^2 < 40 \).
- Start by estimating the maximum integer value for \( x \). Since \( x^2 < 40 \), \( x \) can be as large as the greatest integer less than \(\sqrt{40} \approx 6.32\). Thus, the largest integer \( x \) can be, while satisfying \( x^2 < 40 \), is 6.
- Remember to consider negative integers as well, because squaring negative numbers results in positive values. So the range must include negative integers.
2. Test integer values within the range \([-6, 6]\):
- The square of \(-6\) is \( (-6)^2 = 36 < 40 \).
- The square of \(-5\) is \( (-5)^2 = 25 < 40 \).
- The square of \(-4\) is \( (-4)^2 = 16 < 40 \).
- The square of \(-3\) is \( (-3)^2 = 9 < 40 \).
- The square of \(-2\) is \( (-2)^2 = 4 < 40 \).
- The square of \(-1\) is \( (-1)^2 = 1 < 40 \).
- The square of \( 0 \) is \( 0^2 = 0 < 40 \).
- The square of \( 1 \) is \( 1^2 = 1 < 40 \).
- The square of \( 2 \) is \( 2^2 = 4 < 40 \).
- The square of \( 3 \) is \( 3^2 = 9 < 40 \).
- The square of \( 4 \) is \( 4^2 = 16 < 40 \).
- The square of \( 5 \) is \( 5^2 = 25 < 40 \).
- The square of \( 6 \) is \( 6^2 = 36 < 40 \).
3. Conclusion:
- Hence, all integers \( x \) in the set \( \{ -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 \} \) satisfy \( x^2 < 40 \).
Therefore, the set of integers \( x \) such that \( x^2 < 40 \) is:
[tex]\[ \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\} \][/tex]
We need to determine the integer values of \( x \) such that the square of \( x \) is less than 40.
1. Identify the range of \( x \) satisfying \( x^2 < 40 \):
- We want to find the integer values for which \( x^2 < 40 \).
- Start by estimating the maximum integer value for \( x \). Since \( x^2 < 40 \), \( x \) can be as large as the greatest integer less than \(\sqrt{40} \approx 6.32\). Thus, the largest integer \( x \) can be, while satisfying \( x^2 < 40 \), is 6.
- Remember to consider negative integers as well, because squaring negative numbers results in positive values. So the range must include negative integers.
2. Test integer values within the range \([-6, 6]\):
- The square of \(-6\) is \( (-6)^2 = 36 < 40 \).
- The square of \(-5\) is \( (-5)^2 = 25 < 40 \).
- The square of \(-4\) is \( (-4)^2 = 16 < 40 \).
- The square of \(-3\) is \( (-3)^2 = 9 < 40 \).
- The square of \(-2\) is \( (-2)^2 = 4 < 40 \).
- The square of \(-1\) is \( (-1)^2 = 1 < 40 \).
- The square of \( 0 \) is \( 0^2 = 0 < 40 \).
- The square of \( 1 \) is \( 1^2 = 1 < 40 \).
- The square of \( 2 \) is \( 2^2 = 4 < 40 \).
- The square of \( 3 \) is \( 3^2 = 9 < 40 \).
- The square of \( 4 \) is \( 4^2 = 16 < 40 \).
- The square of \( 5 \) is \( 5^2 = 25 < 40 \).
- The square of \( 6 \) is \( 6^2 = 36 < 40 \).
3. Conclusion:
- Hence, all integers \( x \) in the set \( \{ -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 \} \) satisfy \( x^2 < 40 \).
Therefore, the set of integers \( x \) such that \( x^2 < 40 \) is:
[tex]\[ \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.