Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve the given equation step-by-step:
Given equation:
[tex]\[ 4 \csc(2A) \cot(2A) = \csc^2(A) - \sec^2(A) \][/tex]
### Step-by-Step Solution:
1. Identify the components on both sides of the equation:
- LHS (Left-Hand Side): \( 4 \csc(2A) \cot(2A) \)
- RHS (Right-Hand Side): \( \csc^2(A) - \sec^2(A) \)
2. Rewrite \(\csc\) and \(\cot\) in terms of basic trigonometric functions:
- \(\csc(x) = \frac{1}{\sin(x)}\)
- \(\cot(x) = \frac{\cos(x)}{\sin(x)}\)
3. Simplify the LHS:
Substitute \(\csc(2A) = \frac{1}{\sin(2A)}\) and \(\cot(2A) = \frac{\cos(2A)}{\sin(2A)}\):
[tex]\[ 4 \csc(2A) \cot(2A) = 4 \left(\frac{1}{\sin(2A)}\right) \left(\frac{\cos(2A)}{\sin(2A)}\right) = 4 \frac{\cos(2A)}{\sin^2(2A)} \][/tex]
4. Rewrite \(\csc^2(A)\) and \(\sec^2(A)\) using their definitions in terms of sine and cosine:
[tex]\[ \csc(A) = \frac{1}{\sin(A)} \implies \csc^2(A) = \frac{1}{\sin^2(A)} \][/tex]
[tex]\[ \sec(A) = \frac{1}{\cos(A)} \implies \sec^2(A) = \frac{1}{\cos^2(A)} \][/tex]
5. Simplify the RHS:
[tex]\[ \csc^2(A) - \sec^2(A) = \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \][/tex]
6. Now, compare the simplified LHS and RHS expressions:
- LHS: \( 4 \frac{\cos(2A)}{\sin^2(2A)} \)
- RHS: \( \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \)
7. Establish the equation based on step 6:
[tex]\[ 4 \frac{\cos(2A)}{\sin^2(2A)} = \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \][/tex]
8. Form the final equation:
[tex]\[ Eq\left(4 \cot(2A) \csc(2A), \csc^2(A) - \sec^2(A) \right) \][/tex]
Thus, when analyzing the components and simplifying, we observe that:
[tex]\[ 4 \csc(2A) \cot(2A) = \csc^2(A) - \sec^2(A) \][/tex]
is indeed an identity, showing that both sides of the given equation are equal.
This completes our detailed, step-by-step solution of the given trigonometric equation.
Given equation:
[tex]\[ 4 \csc(2A) \cot(2A) = \csc^2(A) - \sec^2(A) \][/tex]
### Step-by-Step Solution:
1. Identify the components on both sides of the equation:
- LHS (Left-Hand Side): \( 4 \csc(2A) \cot(2A) \)
- RHS (Right-Hand Side): \( \csc^2(A) - \sec^2(A) \)
2. Rewrite \(\csc\) and \(\cot\) in terms of basic trigonometric functions:
- \(\csc(x) = \frac{1}{\sin(x)}\)
- \(\cot(x) = \frac{\cos(x)}{\sin(x)}\)
3. Simplify the LHS:
Substitute \(\csc(2A) = \frac{1}{\sin(2A)}\) and \(\cot(2A) = \frac{\cos(2A)}{\sin(2A)}\):
[tex]\[ 4 \csc(2A) \cot(2A) = 4 \left(\frac{1}{\sin(2A)}\right) \left(\frac{\cos(2A)}{\sin(2A)}\right) = 4 \frac{\cos(2A)}{\sin^2(2A)} \][/tex]
4. Rewrite \(\csc^2(A)\) and \(\sec^2(A)\) using their definitions in terms of sine and cosine:
[tex]\[ \csc(A) = \frac{1}{\sin(A)} \implies \csc^2(A) = \frac{1}{\sin^2(A)} \][/tex]
[tex]\[ \sec(A) = \frac{1}{\cos(A)} \implies \sec^2(A) = \frac{1}{\cos^2(A)} \][/tex]
5. Simplify the RHS:
[tex]\[ \csc^2(A) - \sec^2(A) = \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \][/tex]
6. Now, compare the simplified LHS and RHS expressions:
- LHS: \( 4 \frac{\cos(2A)}{\sin^2(2A)} \)
- RHS: \( \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \)
7. Establish the equation based on step 6:
[tex]\[ 4 \frac{\cos(2A)}{\sin^2(2A)} = \frac{1}{\sin^2(A)} - \frac{1}{\cos^2(A)} \][/tex]
8. Form the final equation:
[tex]\[ Eq\left(4 \cot(2A) \csc(2A), \csc^2(A) - \sec^2(A) \right) \][/tex]
Thus, when analyzing the components and simplifying, we observe that:
[tex]\[ 4 \csc(2A) \cot(2A) = \csc^2(A) - \sec^2(A) \][/tex]
is indeed an identity, showing that both sides of the given equation are equal.
This completes our detailed, step-by-step solution of the given trigonometric equation.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.