Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's determine the total surface area of the solar panels the agriculture club owns, including the new solar panels Jessica is installing and the one they already have.
Given are the surface areas of the new solar panels:
[tex]\[ \begin{align*} A1 &= 28c^3 + 15c^2 - 31c + 11, \\ A2 &= 28c^3 + 31c^2 + c - 11, \\ A3 &= 28c^3 + 23c^2 - 15c, \\ A4 &= 8c^2 + 16c - 11. \end{align*} \][/tex]
We need to find the sum of these areas.
First, let's add up all the terms involving \( c^3 \):
[tex]\[ 28c^3 + 28c^3 + 28c^3 = 84c^3. \][/tex]
Next, let's add up all the terms involving \( c^2 \):
[tex]\[ 15c^2 + 31c^2 + 23c^2 + 8c^2 = 77c^2. \][/tex]
Now, let's add up all the terms involving \( c \):
[tex]\[ -31c + c - 15c + 16c = -29c. \][/tex]
Finally, let's add up the constant terms:
[tex]\[ 11 - 11 + 0 - 11 = -11. \][/tex]
Putting all these together, the new total surface area is:
[tex]\[ 84c^3 + 77c^2 - 29c - 11. \][/tex]
This result accounts for the combined areas of all four solar panels. Let's include the one solar panel the agriculture club already has:
Given the surface area of the existing solar panel as \(8c^2 + 16c - 11,\) we add this to the total surface area calculated for the new panels to get the total surface area of all the solar panels the club owns.
Therefore, integrating the existing panel’s area does not alter this because it was originally considered within the calculation of \(A4\) already.
Hence, the total surface area of the solar panels is:
[tex]\[ 84c^3 + 77c^2 - 29c - 11. \][/tex]
Given are the surface areas of the new solar panels:
[tex]\[ \begin{align*} A1 &= 28c^3 + 15c^2 - 31c + 11, \\ A2 &= 28c^3 + 31c^2 + c - 11, \\ A3 &= 28c^3 + 23c^2 - 15c, \\ A4 &= 8c^2 + 16c - 11. \end{align*} \][/tex]
We need to find the sum of these areas.
First, let's add up all the terms involving \( c^3 \):
[tex]\[ 28c^3 + 28c^3 + 28c^3 = 84c^3. \][/tex]
Next, let's add up all the terms involving \( c^2 \):
[tex]\[ 15c^2 + 31c^2 + 23c^2 + 8c^2 = 77c^2. \][/tex]
Now, let's add up all the terms involving \( c \):
[tex]\[ -31c + c - 15c + 16c = -29c. \][/tex]
Finally, let's add up the constant terms:
[tex]\[ 11 - 11 + 0 - 11 = -11. \][/tex]
Putting all these together, the new total surface area is:
[tex]\[ 84c^3 + 77c^2 - 29c - 11. \][/tex]
This result accounts for the combined areas of all four solar panels. Let's include the one solar panel the agriculture club already has:
Given the surface area of the existing solar panel as \(8c^2 + 16c - 11,\) we add this to the total surface area calculated for the new panels to get the total surface area of all the solar panels the club owns.
Therefore, integrating the existing panel’s area does not alter this because it was originally considered within the calculation of \(A4\) already.
Hence, the total surface area of the solar panels is:
[tex]\[ 84c^3 + 77c^2 - 29c - 11. \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.