Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine whether the dilation of the triangle is an enlargement or a reduction based on the given scale factor \( n = \frac{1}{3} \), let's carefully analyze the problem step by step.
1. Understanding the Scale Factor:
- The scale factor \( n \) dictates by how much the figure is resized.
- If \( n > 1 \), the dilation results in an enlargement, meaning the figure increases in size.
- If \( 0 < n < 1 \), the dilation results in a reduction, meaning the figure decreases in size.
- If \( n \leq 0 \), it generally does not conform to standard geometric dilation principles, implying an invalid condition for this problem.
2. Given Scale Factor:
- You are given \( n = \frac{1}{3} \).
3. Evaluate the Given Scale Factor:
- Since \( \frac{1}{3} \) is a positive number and \( 0 < \frac{1}{3} < 1 \), this scale factor satisfies the condition for a reduction.
- Therefore, the dilation reduces the size of the original figure to \(\frac{1}{3}\) of its original dimensions.
4. Conclusion:
- Given that \( 0 < n < 1 \) with \( n = \frac{1}{3} \), it confirms that the figure undergoes a reduction.
Based on this logical analysis, the true statement regarding the dilation is:
It is a reduction because [tex]\( 0 < n < 1 \)[/tex].
1. Understanding the Scale Factor:
- The scale factor \( n \) dictates by how much the figure is resized.
- If \( n > 1 \), the dilation results in an enlargement, meaning the figure increases in size.
- If \( 0 < n < 1 \), the dilation results in a reduction, meaning the figure decreases in size.
- If \( n \leq 0 \), it generally does not conform to standard geometric dilation principles, implying an invalid condition for this problem.
2. Given Scale Factor:
- You are given \( n = \frac{1}{3} \).
3. Evaluate the Given Scale Factor:
- Since \( \frac{1}{3} \) is a positive number and \( 0 < \frac{1}{3} < 1 \), this scale factor satisfies the condition for a reduction.
- Therefore, the dilation reduces the size of the original figure to \(\frac{1}{3}\) of its original dimensions.
4. Conclusion:
- Given that \( 0 < n < 1 \) with \( n = \frac{1}{3} \), it confirms that the figure undergoes a reduction.
Based on this logical analysis, the true statement regarding the dilation is:
It is a reduction because [tex]\( 0 < n < 1 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.