Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze the two functions \( f(x) = -5^x + 2 \) and \( g(x) = -5x^2 + 2 \) to determine their [tex]$y$[/tex]-values.
1. Function \( f(x) = -5^x + 2 \):
- This is an exponential function where the base of the exponent is 5 and it is negative.
- As \( x \) increases, \( 5^x \) grows exponentially. Since this term is negative, \( -5^x \) also grows negatively.
- Therefore, as \( x \) approaches positive infinity, \( -5^x \) approaches negative infinity.
- Thus, \( f(x) \) will get closer and closer to \( 2 \) from below (since we are adding 2 to a very large negative number).
[tex]\[ \lim_{{x \to \infty}} f(x) = 2 \][/tex]
However, \( f(x) \) never actually reaches 2; it only approaches it.
2. Function \( g(x) = -5x^2 + 2 \):
- This is a quadratic function opening downwards because the coefficient of \( x^2 \) is negative.
- The vertex of this parabola represents the maximum point since the parabola opens downwards.
- The vertex of a parabola \( ax^2 + bx + c \) occurs at \( x = -\frac{b}{2a} \).
- In this case, \( a = -5 \), \( b = 0 \), and \( c = 2 \), so the vertex is at \( x = 0 \).
[tex]\[ g(0) = -5(0)^2 + 2 = 2 \][/tex]
Therefore, the maximum [tex]$y$[/tex]-value of \( g(x) \) is 2.
To summarize:
- \( g(x) \) achieves a maximum [tex]$y$[/tex]-value of 2 at \( x = 0 \).
- \( f(x) \) approaches a maximum [tex]$y$[/tex]-value of 2 as \( x \) approaches infinity but never actually reaches 2.
Now, let's match these conclusions with the given options:
A. \( f(x) \) and \( g(x) \) have equivalent maximum [tex]$y$[/tex]-values.
- This is incorrect because while \( g(x) \) reaches the value 2, \( f(x) \) only approaches 2.
B. \( g(x) \) has the largest possible [tex]$y$[/tex]-value.
- This is correct. \( g(x) \) indeed reaches a [tex]$y$[/tex]-value of 2, which is the largest possible value it attains.
C. \( f(x) \) has the largest possible [tex]$y$[/tex]-value.
- This is incorrect because \( f(x) \) does not reach the value 2, it only approaches it.
D. The maximum [tex]$y$[/tex]-value of \( f(x) \) approaches 2.
- This is correct. As \( x \) increases, \( f(x) \) approaches 2.
Thus, options B and D are correct, aligning with our detailed analysis.
1. Function \( f(x) = -5^x + 2 \):
- This is an exponential function where the base of the exponent is 5 and it is negative.
- As \( x \) increases, \( 5^x \) grows exponentially. Since this term is negative, \( -5^x \) also grows negatively.
- Therefore, as \( x \) approaches positive infinity, \( -5^x \) approaches negative infinity.
- Thus, \( f(x) \) will get closer and closer to \( 2 \) from below (since we are adding 2 to a very large negative number).
[tex]\[ \lim_{{x \to \infty}} f(x) = 2 \][/tex]
However, \( f(x) \) never actually reaches 2; it only approaches it.
2. Function \( g(x) = -5x^2 + 2 \):
- This is a quadratic function opening downwards because the coefficient of \( x^2 \) is negative.
- The vertex of this parabola represents the maximum point since the parabola opens downwards.
- The vertex of a parabola \( ax^2 + bx + c \) occurs at \( x = -\frac{b}{2a} \).
- In this case, \( a = -5 \), \( b = 0 \), and \( c = 2 \), so the vertex is at \( x = 0 \).
[tex]\[ g(0) = -5(0)^2 + 2 = 2 \][/tex]
Therefore, the maximum [tex]$y$[/tex]-value of \( g(x) \) is 2.
To summarize:
- \( g(x) \) achieves a maximum [tex]$y$[/tex]-value of 2 at \( x = 0 \).
- \( f(x) \) approaches a maximum [tex]$y$[/tex]-value of 2 as \( x \) approaches infinity but never actually reaches 2.
Now, let's match these conclusions with the given options:
A. \( f(x) \) and \( g(x) \) have equivalent maximum [tex]$y$[/tex]-values.
- This is incorrect because while \( g(x) \) reaches the value 2, \( f(x) \) only approaches 2.
B. \( g(x) \) has the largest possible [tex]$y$[/tex]-value.
- This is correct. \( g(x) \) indeed reaches a [tex]$y$[/tex]-value of 2, which is the largest possible value it attains.
C. \( f(x) \) has the largest possible [tex]$y$[/tex]-value.
- This is incorrect because \( f(x) \) does not reach the value 2, it only approaches it.
D. The maximum [tex]$y$[/tex]-value of \( f(x) \) approaches 2.
- This is correct. As \( x \) increases, \( f(x) \) approaches 2.
Thus, options B and D are correct, aligning with our detailed analysis.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.