Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which function has no horizontal asymptote, we need to analyze the degrees of the numerator and the denominator in each function and apply the rules for finding horizontal asymptotes.
1. \( f(x) = \frac{2x - 1}{3x^2} \)
- The degree of the numerator: \(1\) (since the highest power of \(x\) is \(x^1\))
- The degree of the denominator: \(2\) (since the highest power of \(x\) is \(x^2\))
- If the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is \( y = 0 \).
2. \( f(x) = \frac{x - 1}{3x} \)
- The degree of the numerator: \(1\) (since the highest power of \(x\) is \(x^1\))
- The degree of the denominator: \(1\) (since the highest power of \(x\) is \(x^1\))
- If the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is \( y = \) (leading coefficient of the numerator) / (leading coefficient of the denominator). Therefore, the horizontal asymptote here is \( y = \frac{1}{3} \).
3. \( f(x) = \frac{2x^2}{3x - 1} \)
- The degree of the numerator: \(2\) (since the highest power of \(x\) is \(x^2\))
- The degree of the denominator: \(1\) (since the highest power of \(x\) is \(x^1\))
- If the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote.
4. \( f(x) = \frac{3x^2}{x^2 - 1} \)
- The degree of the numerator: \(2\) (since the highest power of \(x\) is \(x^2\))
- The degree of the denominator: \(2\) (since the highest power of \(x\) is \(x^2\))
- If the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is \( y = \) (leading coefficient of the numerator) / (leading coefficient of the denominator). Therefore, the horizontal asymptote here is \( y = \frac{3}{1} = 3 \).
From this analysis, we see that the function \( f(x) = \frac{2x^2}{3x - 1} \) has no horizontal asymptote.
Therefore, the function that has no horizontal asymptote is:
[tex]\[ \boxed{f(x) = \frac{2x^2}{3x - 1}} \][/tex]
1. \( f(x) = \frac{2x - 1}{3x^2} \)
- The degree of the numerator: \(1\) (since the highest power of \(x\) is \(x^1\))
- The degree of the denominator: \(2\) (since the highest power of \(x\) is \(x^2\))
- If the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is \( y = 0 \).
2. \( f(x) = \frac{x - 1}{3x} \)
- The degree of the numerator: \(1\) (since the highest power of \(x\) is \(x^1\))
- The degree of the denominator: \(1\) (since the highest power of \(x\) is \(x^1\))
- If the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is \( y = \) (leading coefficient of the numerator) / (leading coefficient of the denominator). Therefore, the horizontal asymptote here is \( y = \frac{1}{3} \).
3. \( f(x) = \frac{2x^2}{3x - 1} \)
- The degree of the numerator: \(2\) (since the highest power of \(x\) is \(x^2\))
- The degree of the denominator: \(1\) (since the highest power of \(x\) is \(x^1\))
- If the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote.
4. \( f(x) = \frac{3x^2}{x^2 - 1} \)
- The degree of the numerator: \(2\) (since the highest power of \(x\) is \(x^2\))
- The degree of the denominator: \(2\) (since the highest power of \(x\) is \(x^2\))
- If the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is \( y = \) (leading coefficient of the numerator) / (leading coefficient of the denominator). Therefore, the horizontal asymptote here is \( y = \frac{3}{1} = 3 \).
From this analysis, we see that the function \( f(x) = \frac{2x^2}{3x - 1} \) has no horizontal asymptote.
Therefore, the function that has no horizontal asymptote is:
[tex]\[ \boxed{f(x) = \frac{2x^2}{3x - 1}} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.