Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A ray of light incident at angle 30° to the normal is deviated through an angle of 10.53° in a rectangular glass prism.calculate the refractive index of the glass

Sagot :

Answer:

1.5

Explanation:

Light Refraction and Snell's Law

When light gets refracted and deviates upon entering a different medium, it will go closer to the normal because of the decceleration in speed. Upon entering a new medium, it moves 10.53* closer to the normal, therefore the angle of refraction is 30-10.53 = 19.47*.

To calculate the refractive index of the glass, you have to use snell's law

[tex]n_1sin\theta_1=n_2sin\theta_2[/tex]

where:

n1 = initial refractive index = 1.00 (air)

n2 = second/new refractive index = x

angle1 = angle of incidence = 30*

angle2 = angle of refraction = 19.47*

Therefore, n2 can be found by dividing each side by sin(O)2

[tex]\frac{n_1sin\theta_1}{sin\theta_2} = n_2[/tex]

[tex]\frac{1.00sin(30)}{sin(19.47)} = n_2[/tex]

[tex]\frac{0.5}{0.33331324756} = n_2[/tex]

[tex]1.5 = n_2[/tex]

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.