Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which ordered pair \((x, y)\) satisfies both inequalities:
[tex]\[ y > -3x + 3 \][/tex]
[tex]\[ y \geq 2x - 2 \][/tex]
we need to check each pair against both inequalities.
1. Pair (1, 0):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 0 > -3(1) + 3 \rightarrow 0 > 0 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 0 \geq 2(1) - 2 \rightarrow 0 \geq 0 \][/tex] (True)
This pair does not satisfy the first inequality, so (1, 0) is not a solution.
2. Pair (-1, 1):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 1 > -3(-1) + 3 \rightarrow 1 > 6 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 1 \geq 2(-1) - 2 \rightarrow 1 \geq -4 \][/tex] (True)
This pair does not satisfy the first inequality, so (-1, 1) is not a solution.
3. Pair (2, 2):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 2 > -3(2) + 3 \rightarrow 2 > -3 \][/tex] (True)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 2 \geq 2(2) - 2 \rightarrow 2 \geq 2 \][/tex] (True)
This pair satisfies both inequalities, so (2, 2) is a solution.
4. Pair (0, 3):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 3 > -3(0) + 3 \rightarrow 3 > 3 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 3 \geq 2(0) - 2 \rightarrow 3 \geq -2 \][/tex] (True)
This pair does not satisfy the first inequality, so (0, 3) is not a solution.
Thus, the ordered pair [tex]\((2, 2)\)[/tex] makes both inequalities true.
[tex]\[ y > -3x + 3 \][/tex]
[tex]\[ y \geq 2x - 2 \][/tex]
we need to check each pair against both inequalities.
1. Pair (1, 0):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 0 > -3(1) + 3 \rightarrow 0 > 0 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 0 \geq 2(1) - 2 \rightarrow 0 \geq 0 \][/tex] (True)
This pair does not satisfy the first inequality, so (1, 0) is not a solution.
2. Pair (-1, 1):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 1 > -3(-1) + 3 \rightarrow 1 > 6 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 1 \geq 2(-1) - 2 \rightarrow 1 \geq -4 \][/tex] (True)
This pair does not satisfy the first inequality, so (-1, 1) is not a solution.
3. Pair (2, 2):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 2 > -3(2) + 3 \rightarrow 2 > -3 \][/tex] (True)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 2 \geq 2(2) - 2 \rightarrow 2 \geq 2 \][/tex] (True)
This pair satisfies both inequalities, so (2, 2) is a solution.
4. Pair (0, 3):
- First inequality: \( y > -3x + 3 \)
[tex]\[ 3 > -3(0) + 3 \rightarrow 3 > 3 \][/tex] (False)
- Second inequality: \( y \geq 2x - 2 \)
[tex]\[ 3 \geq 2(0) - 2 \rightarrow 3 \geq -2 \][/tex] (True)
This pair does not satisfy the first inequality, so (0, 3) is not a solution.
Thus, the ordered pair [tex]\((2, 2)\)[/tex] makes both inequalities true.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.