Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To predict the number of bacteria present after 19 hours, let's follow a step-by-step solution using the given exponential growth formula:
[tex]\[ P = A e^{k t} \][/tex]
1. Initial Information:
- Initial number of bacteria (\(P_0\)) = 6,000
- Number of bacteria after 3 hours (\(P_3\)) = 7,200
- Time elapsed to reach 7,200 bacteria (\(t_3\)) = 3 hours
- Time after which we need to predict the number of bacteria (\(t_{19}\)) = 19 hours
2. Determine the growth rate constant \(k\):
Using the formula \(P = A e^{k t}\):
[tex]\[ P_3 = P_0 e^{k t_3} \][/tex]
Substitute \(P_3\), \(P_0\), and \(t_3\):
[tex]\[ 7200 = 6000 e^{3k} \][/tex]
Solve for \(e^{3k}\):
[tex]\[ e^{3k} = \frac{7200}{6000} \][/tex]
[tex]\[ e^{3k} = 1.2 \][/tex]
Take the natural logarithm on both sides to solve for \(3k\):
[tex]\[ 3k = \ln(1.2) \][/tex]
Divide by 3 to isolate \(k\):
[tex]\[ k = \frac{\ln(1.2)}{3} \][/tex]
Calculate \(k\) and round to four decimal places:
[tex]\[ k \approx 0.0608 \][/tex]
3. Predict the number of bacteria after 19 hours:
Using the formula again \(P = A e^{k t}\):
[tex]\[ P_{19} = P_0 e^{k t_{19}} \][/tex]
Substitute \(P_0\), \(k\), and \(t_{19}\):
[tex]\[ P_{19} = 6000 e^{0.0608 \times 19} \][/tex]
Compute the exponent:
[tex]\[ 0.0608 \times 19 = 1.1552 \][/tex]
Then:
[tex]\[ P_{19} = 6000 e^{1.1552} \][/tex]
Calculate \(e^{1.1552}\):
[tex]\[ e^{1.1552} \approx 3.1731 \][/tex]
Finally, calculate \(P_{19}\):
[tex]\[ P_{19} = 6000 \times 3.1731 \approx 19038.4889 \][/tex]
4. Round the answer to the nearest whole number:
[tex]\[ P_{19} \approx 19,038 \][/tex]
Therefore, after 19 hours, there will be approximately 19,038 bacteria present in the culture.
[tex]\[ P = A e^{k t} \][/tex]
1. Initial Information:
- Initial number of bacteria (\(P_0\)) = 6,000
- Number of bacteria after 3 hours (\(P_3\)) = 7,200
- Time elapsed to reach 7,200 bacteria (\(t_3\)) = 3 hours
- Time after which we need to predict the number of bacteria (\(t_{19}\)) = 19 hours
2. Determine the growth rate constant \(k\):
Using the formula \(P = A e^{k t}\):
[tex]\[ P_3 = P_0 e^{k t_3} \][/tex]
Substitute \(P_3\), \(P_0\), and \(t_3\):
[tex]\[ 7200 = 6000 e^{3k} \][/tex]
Solve for \(e^{3k}\):
[tex]\[ e^{3k} = \frac{7200}{6000} \][/tex]
[tex]\[ e^{3k} = 1.2 \][/tex]
Take the natural logarithm on both sides to solve for \(3k\):
[tex]\[ 3k = \ln(1.2) \][/tex]
Divide by 3 to isolate \(k\):
[tex]\[ k = \frac{\ln(1.2)}{3} \][/tex]
Calculate \(k\) and round to four decimal places:
[tex]\[ k \approx 0.0608 \][/tex]
3. Predict the number of bacteria after 19 hours:
Using the formula again \(P = A e^{k t}\):
[tex]\[ P_{19} = P_0 e^{k t_{19}} \][/tex]
Substitute \(P_0\), \(k\), and \(t_{19}\):
[tex]\[ P_{19} = 6000 e^{0.0608 \times 19} \][/tex]
Compute the exponent:
[tex]\[ 0.0608 \times 19 = 1.1552 \][/tex]
Then:
[tex]\[ P_{19} = 6000 e^{1.1552} \][/tex]
Calculate \(e^{1.1552}\):
[tex]\[ e^{1.1552} \approx 3.1731 \][/tex]
Finally, calculate \(P_{19}\):
[tex]\[ P_{19} = 6000 \times 3.1731 \approx 19038.4889 \][/tex]
4. Round the answer to the nearest whole number:
[tex]\[ P_{19} \approx 19,038 \][/tex]
Therefore, after 19 hours, there will be approximately 19,038 bacteria present in the culture.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.